Git Extensions Documentation
Release 4.1

Contributors

May 03, 2023



Contents

Git Extensions 1
LT Features . . . . . o v v it e e e e e e e e e e e e e e e e e e 1
1.2 Video tutorials . . . . . . . . L e e e e e e e e e 1
1.3 Links . . . . o e e e 2
Installation 3
2.1 Windows installer . . . . . . . L e e e e e e 3
2.2 Portable . . . . .. e e e e e e e e e 6
2.3 Settings . . . . o e e e e e e e 6
Dashboard 9
3.1  Create New repoSitOry . . . . . o v v vt e e e e e e e e e e e e e e e e e 11
3.2 Openrepository . . . . v v v i i e e e e e e e e e e e e e e e 11
3.3 CIONE 1ePOSItOTY . v v v v o v e e i e e e e e e e e e e e e e e e e e e e e e e e 11
3.4  Clone Github repoSItOTy . . . . . v v v it e e e e e e e e e e e e e e e e e e e e 12
Browse Repository 13
4.1 Maintoolbar . . . . . .. e e e e 13
42 Revisiongraph . . . . . . . L e e e e e e 13
421  Search . . . . . . L e e 15
4.2.1.1 Quicksearchinhistory . . . . . . ... ... 15

422 Navigation . . . . . . .. i i e e e e e e 16
4221 Gotoaspecificcommit . . . . . . . o v vt e e e e e 16

423  Filter . . . .o e e 16
423.1  Filterhistory . . . . . . . .. e 16

4232 Reflog . . . . . e 18

43 Tabs . . . . e e e e e e e e e e e e 18
431 0 Commit . . . . v v e e e e e e e e e e e 19

432  Diff . e 19

433 Filetree . . . . . . e e e 19

434  GPG . . . . o 19

435 Console . . . ... e e e e e e 20

43.6 Bulldreport . . . . . ... e e e e e e e e e 20

4.4  Leftpanel . . . . . o L e e e e e e e e 20
Commit 21
5.1 Commitchanges . . . . . . . . o e e e e e e e e 21




52

5.1.1  Stagingchanges . . . . . . . . .o e e e e e e e e e e e e

5.1.2  Staging selected lines . . . . . . . . .. L e e e e
5.1.3  Undoing or resetting changes . . . . . . . . . . . .. . L
5.14  Making the commit . . . . . . . ... L e
Amend COmmit . . . . . . . Lo e e e e

6 Branches

6.1

6.2
6.3

6.4
6.5
6.6
6.7

7 Tag
7.1
7.2

Create branch

6.1.1  Orphanbranches . . . . . . . . . . . . e
Checkoutbranch . . . . . . . . . . e
Mergebranches . . . . . . . . . . e e e e e e e e e e
6.3.1  Advanced Merge Options . . . . . . o v v v i i e e e e e e e e e e e e

Squash . . .

Create tag . .
Delete tag . .

8 Remotes
Manage remote rePOSItOTIES . . v v v v v v v e e e e e e e e e e e e e e e e e e e e e e

8.1
8.2
8.3

8.4
8.5

Git Credential

Manager . . . . ... e e e e e e e e e

Create SSHKey . . . . . . . o o e e e
83.1 PuTTYandgithub . . . . . . .. ... e
832 OpenSSHandgithub . . . . . . . . . .. e

Pull changes
Push changes

9 Submodules
Manage submodules . . . . . ... e e e e e e e e e e e
Addsubmodule . . . . . . L e e e e e e e e e

9.1
9.2

10 Worktrees

11 Stash

11.1 Revisiongraph . . . . . . . . 0 L e e e e e e

11.2

Left panel . .

12 Modify Git history
Cherry pick commit . . . . . . . .. L e e

12.1
12.2
12.3
12.4

12.5

Revert commit

Modify the last commit . . . . . . . . .o e e e e e e e e e e e e
Modify an older commit . . . . . . ... L e e e e e e e
12.4.1 Interactive rebase . . . . . . . o v v v v i e e e e e e e e e e e e e e e e

12.4.2  Using

autosquash rebase feature . . . . . . .. ..o

12.4.3 Edit/reword COmmit . . . . . . . . .. e e e e e e e e e e e e e

12.4.4 Rebas

EONLO . . . . o o e e e e e e e e e e e e e e e e e e e e e e e e

Merge Conflicts . . . . . . . o L e e e e e e e e e e
12.5.1 Handle merge conflicts . . . . . . . . .. ...

13 Patches

13.1

Create patch

13.2  Apply patches

24
24
25

29
30
31
31
32
33
34
36
36
37

38
38
39

40
40
42
42
42
44
45
47

49
49
50

51

53
54
55

56
56
58
59
60
60
61
63
63
65
65

68
69
69




14 Notes

15 File history

15.1
15.2
15.3
15.4

Commit. . .......

16 Maintenance

16.1
16.2
16.3
16.4

Compress Git database .
Recover lost objects . .
Fix user names . . . . .
Ignore files . . . . ...

17 Settings

17.1

17.2

17.3

Git Extensions . . . . .
17.1.1 General . . ..
17.1.2 Appearance . .
17.1.3 Sorting . ...
17.1.4 Colors . . . ..
17.1.5 Fonts ... ..
17.1.6 Console style .
17.1.7 Revision Links

17.1.8 Build server integration . . . . . . . . . . .. e e e e e e e e e e e e e e e

17.1.9 Scripts . . . . .
17.1.10 Hotkeys . . . .
17.1.11 Shell extension
17.1.12 Advanced . . .
17.1.13 Confirmations .
17.1.14 Detailed . . . .

17.1.15 Browse repository window . . . . . . .. .. L. oL e

17.1.16 Commit dialog
17.1.17 Diff viewer . .
17.1.18 Blame viewer .
17.1.19 SSH . . . . ..
Git ...........
17.2.1 Paths . .. ..
17.2.2 Config . . . . .
17.2.3 Advanced . . .
Plugins . ... ... ..

18 Plugins

18.1

Bundled. . ... .. ..

18.1.1 Auto compile submodules . . . . . .. ...

18.1.2 Bitbucket Server

18.1.3 Create local tracking branches . . . . . . . . . ... .. L
18.1.4 Delete obsolete branches . . . . . . . . . . . L e

18.1.5 Find large files
18.1.6 GitHub . . ..
18.1.7 GitFlow . . . .
18.1.8 Gource . . ..
18.1.9 Impact Graph .

18.1.10 Periodic background fetch . . . . . . . . .. .. L

18.1.11 Plugin Manager
18.1.12 Proxy Switcher

71

73
74
74
75
76

77
77
78
80
81

82
82
84
85
87
87
88
88
88
91
92
93
94
94
95
97
97
97
98
103
104
104
104
105
106
106

107
107
107
107
108
108
108
108
108
109
109
109
109
109




19

20

21

22

23

24

18.1.13 Release Notes Generator . . . . . . . . . . i v v v i i i e e e e e e e e e e e e
I8.1.14 StatiStiCS . . . . v . v o v e e e e e e e e e e e e e e e e e
18.2 Third party eXtensions . . . . . . . . . it i e e e e e e e e e e e e e e e
18.2.1 GerritCode Review . . . . . . . . . . e e e e e
18.2.2 JiraCommitHint . . . . . . . . . . . . . . e

GitHub

19.1 Clone Github repository . . . . . . . . . . . . e
19.2 Viewpull requests . . . . . . .o o e e e e e e
19.3 Create pull TeqUeSES . . . . . o o e e e e e e e e e e e e e e e e
19.4 Add upstream remoOte . . . . . . . it e e e e e e e e e e e e e e e e e e e e e e e e e
19.5 Settings . . . . o o v i e e e e e e e e e e e e

Translations
20.1 Change language . . . . . . o v v vt e e e e e e e e e e e e e e e
20.2 Translate Git EXtensions . . . . . . . . . . . o i i i e e e e e e e e e e e e e e

Windows Explorer

Other tools

22.1 Visual Studio Code . . . . . . . . L e

222 Visual Studio . . . . .. e e e
2221 MENU . . . vt e e e e e e e e e e e e e e e e e e e e e e e e e
2222 Toolbar . . . . . . e e e e e e e e e e e e e e e e e e e e

Command line
23.1 GitExtensionscommand line . . . . . . . . . . L e e e e e

Appendix
24.1 GitCheatSheet . . . . . . . . . . . o o e

113
113
114
115
116
116

117
117
118

119

121
121
121
121
122
123

124
124

127




CHAPTER 1

Git Extensions

Git Extensions is a toolkit aimed at making working with Git under Windows more intuitive. The shell extension will
integrate in Windows Explorer and presents a context menu on files and directories. There is also a Visual Studio
extension to use Git from the Visual Studio IDE.

1.1 Features

* Feature rich user interface for Git

* 32bit and 64bit support

* Windows Explorer integration for Git

¢ Visual Studio extension (2015-2022)
Specific in 2.5x releases:

* Visual Studio (2010 - 2015) add-in

* Runs under Linux or Mac OS X using Mono

* Basic SVN functionality

For description of 2.x specific features, see the 2.x documentation

1.2 Video tutorials

There are video tutorials for some basic functions on YouTube (made for older Git Extensions versions).
1. Clone
2. Commit changes
3. Push changes
4. Pull changes



https://www.mono-project.com
../release-2.51/git_extensions.html
https://www.youtube.com/watch?v=TlZXSkJGKF8
https://www.youtube.com/watch?v=B8uvje6X7lo
https://www.youtube.com/watch?v=JByfXdbVAiE
https://www.youtube.com/watch?v=9g8gXPsi5Ko

Git Extensions Documentation, Release 4.1

5. Handle merge conflicts

1.3 Links

See the following links for the Git Extensions download page, source code and documentation.
» Download page: https://github.com/gitextensions/gitextensions/releases
* Source Code: https://github.com/gitextensions/gitextensions
* Source Code Issue tracker: https://github.com/gitextensions/gitextensions/issues
* Documentation: https://github.com/gitextensions/GitExtensionsDoc
* Documentation Issue tracker: https://github.com/gitextensions/GitExtensionsDoc/issues
* Wiki: https://github.com/gitextensions/gitextensions/wiki

Please feel free to raise any issues with Git Extensions or its documentation at the appropriate Issue tracker link as
shown above.

1.3. Links 2


https://www.youtube.com/watch?v=Kmc39RvuGM8
https://github.com/gitextensions/gitextensions/releases
https://github.com/gitextensions/gitextensions
https://github.com/gitextensions/gitextensions/issues
https://github.com/gitextensions/GitExtensionsDoc
https://github.com/gitextensions/GitExtensionsDoc/issues
https://github.com/gitextensions/gitextensions/wiki

CHAPTER 2

Installation

2.1 Windows installer

This section only covers Git Extensions installation, you will need Git for Windows.

The Git Extensions installer can be found on GitHub.

#8 Git Extensions 4.1.0.16654 Setup -

Welcome to the Git Extensions
4.1.0.16654 Setup Wizard

The Setup Wizard will install Git Extensions
4.1.0.16654 on your computer. Click Next to
continue or Cancel to exit the Setup Wizard.

Back I Next | | Cancel

Start installation.



https://git-scm.com/download/win
https://github.com/gitextensions/gitextensions/releases/latest

Git Extensions Documentation, Release 4.1

5

Installation Scope
Choose the installation scope and folder

i

Gl+

) Install just for you [ejgo)
Git Extensions 4.1.0.16654 wil be installed in a per-user folder and be
available just for your user account. You do not need local Administrator
privileges.

i® Install for all users of this machine

Git Extensions 4.1.0.16654 wil be installed in a per-machine folder by
default and be availzble for all users. ¥You can change the default
instalation folder. You must have local Administrator privileges.

Back Mext Cancel

Installation scope.

54

Destination Folder
Click Mext to install to the default folder or click Change to choos...

Gl+
BT

Install Git Extensions 4.1.0.16654 to:

|C:\Prugmm Files (xB6)\GitExtensions),

Change...

Back Mext Cancel

Destination folder.

2.1. Windows installer 4



Git Extensions Documentation, Release 4.1

Custom Setup
Select the way you want features to be installed.

;

Gl+

Click the icons in the tree below to change the way features will be installed.

o {Qv| Git BExtensions -
Dg P|U§|i|‘l5

......... =) ~ | Desktop shortcut

--------- ‘=~ | Custom merge scripts

L = ~| Speling dictionaries

- =~ | Translations

--------- = - | Windows Explorer integration

--------- =~ | Add instaliation directory to PATH

--------- = ~| Assign with git://-links b

Browse...

Back Mext Cancel

Choose the options to install.

‘EE':E-:E“E'C*E— 1.0.16654 Setup —

Telemetry privacy policy
We collect information so we can make the app better

Gl+
=)

We won't collect any personal or identifiable information.
You can change your mind at any time.

We would like your permission to collect a little information about ~
how you use Git Extensions. This will help us to make the

application better.

You can opt-out any time.

First, a reminder: Git Extensions is provided "as is", without
warranty of any kind, express or implied, including but not limited
to the warranties of merchantability, fitness for a particular v

Yes, I alow telemetryl

Back Mext Cancel

Allow telemetry to allow the app to collect anonymous data to improve the application.

2.1. Windows installer 5



Git Extensions Documentation, Release 4.1

Ready to install Git Extensions 4.1.0.16654

i

Gl+

Click Install to beqin the instalation. Click Back to review or change any of
your installation settings. Click Cancel to exit the wizard.

Back GInsL—dII Cancel

2.2 Portable

Git Extensions is also distributed as a portable .zip file, that only requires unpacking to a new directory (migrate
settings files and theme manually). Some features like Windows Explorer is not available with this package.

2.3 Settings

Git must be installed prior to starting Git Extensions:

e The Git executable could not be located
on your system.

— Find git..

— Install git..

Cancel

2.2. Portable 6



Git Extensions Documentation, Release 4.1

First selection is language (depends on the installed languages):

| W Choose language

Choose your language

You can change the language at any time in the settings dialog

k‘%.

|

English

Turkish

Traditional Chinese

Japanese Russian

]

Spanish (Argentina)

S

All settings will be verified when Git Extensions is started for the first time. If Git Extensions requires any settings
to be changed, the Settings dialog will be shown. All incorrect settings will be marked in red (for instance if the Git
version is unsupported) and orange for not recommended setting (like that Git version is older than recommended).
You can ask Git Extensions to try to fix the setting for you by clicking on it. When installing Git Extensions for the
first time, you will normally be required to configure your username and email address.

The settings dialog can be invoked at any time by selecting Settings from the Tools menu option.

2.3. Settings



Git Extensions Documentation, Release 4.1

¥

|'I'}-'petc find

Settings source: () Global for all repositories

v.-x Git Extensions -

----- & ' Revision links

e Build server integratic
..... B Scripts

..... [£) Hotkeys

----- » Shell extension

v I Advanced

4 Confirmations
Detailed

2 Browse repository
8 Commit dialog
E2 Diff viewer

4§ Blame viewer

..... 3) SoH

w AP Git

..... ~ Paths

..... #% Config

ﬂ Advanced

Plugins

.41 Auto compile submao
----- O Bitbucket Server

----- # Delete obsolete brant
% Find large files

33 Gerrit Code Review

) GitHub

-4 Periodic background
----- % Plugin Manager

>

The checklist below validates the basic settings needed for Git Extensions to work properly.
Git 2.40.1.windows.1 is found on your computer.
A username and an email address are configured.
There is a mergetool configured: pdmerge
There is a difftool configured: tortoisediff
Shell extensions registered properly.
Linux tools (sh) found on your computer.
Git Extensions is properly registered.

Default 55H client, OpenS5H, will be used. (commandline window will appear on pull, push and clone operations)

The configured language is English.
[] Check settings at startup (disables automatically if all settings are correct)

Save and rescan

v

Changes on the selected page will be saved instantly.
Therefore the Cancel button does NOT revert any changes made. 2K el Apply

For further information see Settings.

2.3. Settings



CHAPTER 3

Dashboard

The dashboard contains the most common tasks, recently opened repositories and categories (favourites). Categories
can be added, grouped in the repository context menu.




Git Extensions Documentation, Release 4.1

¥ Git Extensions

Stert Dashboard  GitHub  Tools  Help

s
G“-/\m-ENS'ONS Recent repositories

-

{5 Create new repository [gitex

=) Open repository

- Recent repositories

g

@ Clone repositor

= postery 7=, Chdev\ge\gitextensionsdocl
= feature/prepare41

{E Clone GitHub repository

CAdevige\gitextensions 4\

B release;

WwsI$\Ubuntu-20.

3L (no branch)

(5 slS\Ubuntu-20.04homel el g GiExtensiondoct
= tmp/wsit

= \wsl$\Ubutu-20.
BE no branch)

[ wslS\Uountu-20.04\home ge) gitestensions| Extemal| Gl
3 (o branch)

=, GAdev\ge\gitextensions 25T\
B3 NikolayXHD/ toolbar

CAdev\ge\gitextensions_2.51\Extemals\Github\

AL (o branch)
B C\devigelgitextensions 3\
& master

Ci\dev\ge\gitextensions_2\Extemals\EasyHooky

WAL no branch)
pEc ik harpCode TextEditoh
= (no branch)
=1, Chdev\ge\gitextensions_4\Exterals\EasyHook\
B3] (no branch)
= Cdev\ge\gitextensions_4\Externals\ICSharpCode TextEditon
IAES (o branch

=1, Chdev\ge\gitextensions\Externals\EasyHook\

] (ro branch

= Chdevige\gitextensions\Externals\ICSharpCode TextEditor,
3 (no branch)

Ex_'L Cihdev\ge\tmp\gitextensionsdoc_bare,
LSS

g9
Chdevige\gitextensions 4\,
| Contribute S reieseeran
<> Develop
S VwsiS\Ubuntu-20.
& Donate = (no branch)
i® Translate test
Chdev\ge\tmp_tesbood\GitExtensionsDoc3\
B Issues E’T geltmp_

Adtions 4

Ex_'L ‘Ch\dev\gc\gitextensions\
3 n 7

tmp/ussl-push!

\\wsllocalhest\Ubuntu-20.04\home\ejgo\ge\GitExtensionsDoc\

master

5 3
(o branch)

B 20, harpCode TextEdioR
(no braneh)

Ci\dev\gc\gitextensions_2.51\Externalshconemu-insdel,

ino branch)

C\devigegitextensions_2.51\Extemals\NBugh

ino branch)

Cdevigc\gitextensions_3\Externals\conemu-insidé,

ino branch)

Ci\dev\gc\gitextensions_3\Externals\Git. hub\
ino branch)

¢ - »
master

Ci\dev\gc\gitextensions 4\Externals\Git.hub\

ino branch)

C\devige'gitextensions\Extemals\conemu-inside,

ino branch)

C\devige gitextensions\External\Git hubl,
master
C\devhgehtmp_testond GitExtensionsDoct

FA\Downloads\RepreGitExtensionsBug 10423\

Actions ~
B e
Actions
g} C\dev\gcitmp)gitextensionsdoc_bare\
s
- v

Recent Repositories can be moved to favourites using the repository context menu. Choose Categories / Add
new to create a new category and add the repository to it, or you can add the repository to an existing category (e.g.

‘Currents’ as shown below).

Recent repositories

| Search repositories

Recent repositories

Vwsl$\Ubuntu-20. || Showinfolder

P tmipwesi

Categories

L (none)

i Chdevigcigitextens
R tmp/godT

w5 Wwsl$iUbuntu-20. 02 romeTE g T T T TE TS

—=== tmp/wsl-pushi

Remowve project from the list

Rermowve missing projects from the list

ge 3

other

test 3

3 Add new...

To open an existing repository, simply click the link to the repository, or select Open repository (from where you can

10



Git Extensions Documentation, Release 4.1

select a repository to open from your local file system).

To create a new repository, one of the following options under Common Actions can be selected.

3.1 Create new repository

When you do not want to work on an existing project, you can create your own repository using this option.

| x Create ne EQOSITOn 7 X |

Directory | w| || Browse..

Repository type
(®) Personal repository
() Central repository, no working directory (--bare --shared=all)

Select a directory where the repository is to be created. You can choose to create a Personal repository or a Central
repository.

A personal repository looks the same as a normal working directory but has a directory named . git at the root level
containing the version history. This is the most common repository.

Central repositories only contain the version history. Because a central repository has no working directory you cannot
checkout a revision in a central repository. It is also impossible to merge or pull changes in a central repository. This
repository type can be used as a public repository where developers can push changes to or pull changes from.

3.2 Open repository

Opens a Git repo already existing on the file system.

}{ Open local repository et

Directory: Viowsl S Ubuntu-20.04%home\ejgot.gch GitExtensionsDoc), T : Browse...

Wowsl P Ubuntu-20.048homelejgot g GitExtensionsDoch,
Chdevigdgitextensionsdoch

Chdevigdgitextensions,

Chdevigcgitextensions_44 . .

ons_2.51\Extern \iwsl$\Ubuntu-20.04\home\gjgo\ gc\gitextensions\ i‘;‘g: ;:_"agltexten sions_2.51\External
Wowsl S Ubuntu-20.08hemelgjgotgchgitextensions\Externalshcon
Wowsl S Ubuntu-20.048 homelgjgotgitextensions\Externals\ ICShar ] ]
ons_3 \iwsl$\Ubuntu-20.04\home\ejgo' gitextensions\Externals\Git.hu {9 ::‘agltexten sions_3\Externalsic

Open

3.3 Clone repository

You can clone an existing repository using this option.

3.1. Create new repository 11



Git Extensions Documentation, Release 4.1

| W Clone ? *

Repository to clone: | https://github.com/gitextensions/GitExtensions. git i | Browse

Destination: | - | Browse

Subdirectory to create: |GitExter15i|:|r15 | {

Branch: ||:|:|efault: remote HEAD) v|

The repository will be cloned to a new directory located here:
[Destination:]\GitExtenszions

Repository type
(®) Personal repository f
() Public repository, no working directory (--bare)

Initialize all submodules Download full history

Clone

The repository you want to clone could be on a network share or could be a repository that is accessed through an
internet or intranet connection. Depending on the protocol (http or ssh) you might need to load a SSH key into PuTTY.
You also need to specify where the cloned repository will be created and the initial branch that is checked out. If the
cloned repository contains submodules, then these can be initialized using their default settings if required.

There are two different types of repositories you can create when making a clone. A personal repository contains the
complete history and also contains a working copy of the source tree. A central (bare) repository is used as a public
repository where developers push the changes they want to share with others to. A central repository contains the
complete history but does not have a working directory like personal repositories.

3.4 Clone Github repository

See GitHub.

3.4. Clone Github repository 12



CHAPTER 4

Browse Repository

You can browse a repository by starting Git Extensions and select the repository to open. The main window contains
the revision graph (commit log). You could also open the ‘Browse’ window from Windows Explorer and from Visual
Studio.

The Browse window contains of several parts:
* Main toolbar
* Revision graph
» Tabs
* Left panel

The Left panel, Tabs and the toolbar can be hidden, as well as showing the Commit tab as a panel in the revision graph.

4.1 Main toolbar

The main toolbar in Browse contains contains menus for other commands like Commit, Stash and Maintenance.

4.2 Revision graph

The full commit history can be browsed. There is a graph that shows branches and merges. You can show the difference
between any two revisions by selecting them using ctrl-click.

13



Git Extensions Documentation, Release 4.1

¥ gitextensions_5 (tmp/reword1) - Git Extensions f0344¢66 (tmp/god-6) - u] x

Start  Repository Navigate View Commands GitHub  Plugins  Tools Help
» [ Cdevigcigitextensions 5\ + b tmpfreword! v‘&v & @ Commit() [~

Author: Gerhard Olsson <6248932+ gerhardol@users.noreply
Date: 1 month age (2022-04-29 21:14:28)
Committer: GitHub <noreply@github.com>

Working directory e 1 ~

sl Commit index

~ £ Submodules

» tmp/reword1 Show multire... Gerhard Olsson 2022-04-29 21:14:28  2516bE0 Commithash:  $f9d0cf27c1eel17771197631024c0abd 1760200
v B gi ions_5 (tmp, 1) = Parent: fleSchle
v Extemals upstream/master Gerhard Olsson
- {3 conemu-inside left panel: reverted menu icon scal.. f_ Holger Schmidt 2022-04-2913:06:557  £3=3c63 SR TN E B D0 RS D)
+[£9 EasyHook
£ sithub Show no changes in grid for artific. ‘ Gerhard Olsson 2022.04-2900:43:21  14471c3 ., Related links: View on GitHub, lssue 9047 v
*. {29 ICSharpCode. TextEditor =
ES it i 2]
B Branches £ "5 Filetree /7 GPG M Console
v tmp Fi es using a regular expressio - diff --git a/GitUI/UserControls/FileStatusDiffCalculater.cs b/GitUI/UserControls/FileStatus A
I reword! . index a@3fada@..be2955c7 100644
y b o] (1) Diff with A f3eSc63e: Ieft panel: reverted menu icon scale to matc., & e O oo T E TS ES DT TS TR TS
% bugfc ' GitUl/UserControls/FileStatusDiffCalculator.cs +++ b/Gitul/userControls/FilestatusDiffCalculator.cs
.E i 2 @@ -112,21 +112,21 @ public IReadOnlylistcFileStatusWithDescription> Reload()
B feature

summary: TranslatedStrings.DiffWithParent + GetDescriptionForRevision(firs
statuses: module.GetDiffFilesWithSubmodulesStatus (firstRev.Objectld, selec

¥ lszyLoadlgnoredFiles_go (071)
v Remotes

©) origin

if (!Appsettings.ShowDiffForallParents || revisions.Count > maxMultiCompare ||

©) upstream if (lAppSettings.ShowDiffForAllParents || revisions.Count > maxMultiCompare)
[ Inactive ] {
Tags return fileStatusDescs;
1

// Get base commit, add as parent if unigue

var firstReviead - GetRevisionOrHead(firstRev, headId);

var selectedRevHead = GetRevisionOrHead(selectedRev, headId);

var baseRevGuid = module.GetMergeBase(firstRevhead, selectedRevhead);

121 + var firstRevHead = headId is null ? null : GetRevisionOrHead(firstRev, headId)
122 + var selectedRevHead = headId is null ? null : GetRevisionOrHead(selectedRew,
123 + var baseRevGuid = (firstRewHead is null || selectedRevHead is null) ? null :
24 ‘ .

i L S S )

The context menu for a commit can both execute Git commands and change the appearance for the form.

4.2. Revision graph 14




Git Extensions Documentation, Release 4.1

[ Copyteo clipboard k
Iy Checkout branch.., 3
W,  Merge inta current branch... 3
2L Rebase current branch on 3

#. Reset current branch to here...

Create new branch here... Cirl+B

Delete branch... 3

It
f‘;g Rename branch... .
e
*:

Reset another branch to here...

4 Create newtag here... Ctrl+T

o Delete tag... k

% Checkout this commit...

4 Revert this commit...

&  Cherry pick this commit...

=8 Archive this commit...

B2 Advanced 3
% Compare k
£l Mavigate 3
1] View 3
o Open on GitHub
|F  supdate

|+ OpeninVs Code

Yiew build report in a browser

4.2.1 Search

You can find text in the commit messages or jump to a specific commit in the current commit history shown in Git
Extensions.

4.2.1.1 Quick search in history

You can find a commit in the commit history that is shown in Git Extensions by searching for text in the commit
message, branch label or tag. This is a quick search function. Simply click into the commit history to give that pane
focus and start typing. Git Extensions will show your search term in the top left corner and will immediately jump
to the next commit with matching text. You can search for the next or previous commit with matching text using
Alt-Down ArroworAlt-Up Arrow.

In Settings, Git Extensions you can change the timeout for typing the text for the quick search.

4.2. Revision graph 15



Git Extensions Documentation, Release 4.1

4.2.2 Navigation

4.2.2.1 Go to a specific commit
You can jump to a particular commit in the commit history if you know the SHA, tag or branch. In fact you can use
any expression valid for git-rev-parse. Select Navigate, Go to commit or press Ctr1-Shift—G to open the

Go to commit window. Enter an SHA or other term to be passed to git-rev-parse into the box at the top and click
Go, or select a branch or tag from one of the two combo boxes below.

4.2.3 Filter

You can also filter the commit history so that fewer commits are shown.

4.2.3.1 Filter history

The history can be filtered using regular expressions and basic filter terms. Filtering will reduce the number of commits
that are shown in the Git Extensions commit history. The quick filter in the toolbar filters by the commit message, the
author and/or the committer.

E» = || [ All branches  Branches: l_f - | Filter: ~ ? -| &

+  Commit message
ad B vichael seibt J
Committer
Seib
d . Michael Seibt Author
traightenLanes clearer . Michael Seibt Diff contains (SLOW)
[ e ]

In the toolbar or context menu of the commit log you can open the advanced filter dialog. The advanced filter dialog
allows you to filter for more specific commits.

4.2. Revision graph 16



Git Extensions Documentation, Release 4.1

Ilodate trancl

Copy to clipboard

! - masterl upstream/

Merge branch 'releas
— = Iy Checkout branch... 3
Working directory §
- I, Merge into current branch... »
Commitindex A ZL  Rebase current branch on 3
} release/4.0 [> u . Reset current branch to here...
Replace sync Commi |l Create new branch here...  Ctrl+B ves #10026
Sorme recent reposito %'B" Rename branch... » [epositories popup:  Being able to see the repository selected in the lists Being able
RussKie/_async_|Co |l Delete branch... v LommitMessageManager.cs
Update GitCommand . Reset another branch to here...
Update Gitll/Commy <4 Create new tag here... Ctrl+T
Update GitUl/Commg ~= Delete tag... ' by: Michael Seibt «36601201+ mstv@users.noreply.github.com:
Update GitUl/Commyg ¥ Checkout this commit... lichael Seibt <36601201+mstv@users.noreply.github.com>
Rewvert this commit...
Update GitCommand i Michael Seibt <36601201+mstv@users.noreply.github.com:>
&  Cherry pick this commit...
Update translations a & Archive this commit...
Merge branch 'releas Bs  Advanced »
Replace sync Commi % Compare o P6 The use of sync AP leads to cbservable delays and locking the application whe
Update System.|0.Ab B Navigate .
Merge branch 'releas mfﬁi Tz R | Branches
— % ) Openon GitHub [#] showall branches Ctrl+ Shift+A
ommit == Diff Fil| - : - r
= : e View build report in a browser ¥ Show current branch only Ctrl+5Shift+U
Author: RussKie <russkie@gmail.com> \}y  Show filtered branches Ctrl+Shift+T
Date: 17 hours age (2023-05-01 00:41:18) .
Commit hash:  1bbc2c007960cfbA916b68644782a1140d607d1f| L) Show reflog references CtrlShift+ L
Child: afZeleld
o = |7 Advanced filter... Ctrl+|
Draw non relatives gray
aleianslalionlaHi g, Highlight selected branch (until refresh) ~ Ctrl+ Shift+B, Alt+LButton
lated links: View on GitHub Commits
intained in branches: z‘ Show artificial commits
aster ZI Show stashes
strearm,/master .
— Show git notes
intained in tags: Grid labels
aster test Show remote branches Ctrl+5hift+R
Show t. Chrl+Alt+T
rives from tag: master test S Aty
Show superproject tags
Show superproject remote branches
Show superproject branches
Grid info
Show build status icon
Show build status text
Show commit message body
Show author date
Show relative date
Columns
Show revision graph column
ZI Show author avatar column
z Show author name column
Show date column
Show 5HA-1 column
Sorting
Sort commits by author date
A”ﬂflg: LU”I”I;L) ILP_"’ opo U[u‘:[ (GHLESLUI UIUIEI_I
4.2. Revision graph 17



Git Extensions Documentation, Release 4.1

When a filter is set, the icon for the advanced filter is changed and you see the current filter as a tooltip for the button.
To remove the filter either remove the filter in the toolbar and press enter or remove the filter in the advanced filter
dialog.

| X

Since (] den 1 maj 2023

Until ] |den 1 maj 2023
I Author ]

Committer

]
Message ]
Diff contains [ ]

Ignore case

Lirnit [] |100000 =
' pathfiter [
Branches ]

[] Show current branch only
[] Show reflog

L] Only first parent

Merge commits

[ Simplify by decoration
Full history

Simplify merges

4.2.3.2 Reflog

By default, Git will not show any commits that are not reachable and do not have any references, such as a branch or
a tag. See Git reflog. Such commits will be purged when Git runs maintenance. By enabling Re f10g via the toolbar
button or in the View menu these commits will be shown too.

4.3 Tabs

For settings and further description, see Tabs.

4.3. Tabs 18


https://git-scm.com/docs/git-reflog

Git Extensions Documentation, Release 4.1

4.3.1 Commit

Commit information and message as well as branch and tag information for the selected commit. This tab can be
moved to the revision grid.

4.3.2 Diff

See also Show file differences for all parents in browse dialog and Show all available difftools

The file viewer will by default show the diff, but may also show Blame for the selected file.

4.3.3 File tree

Show the file tree for the commit.
The file viewer will by default show the file contents, but may also show Blame for the selected file.

You could search a file in the file tree using the default keyboard shortcut Ctrl + Shift + F (configurable in Hotkeys).

x gitextensions (rebase_from_revision_grid) - Git Extensions = O X
Start  Repository  Mavigate View Commands GitHub  Plugins  Teols Help  Solution Runner

L] | ‘_,_| w [ gitextensions ~ o rebase_from_revision_grid V|& v i OtL (“_.-f:' Commit (1) 11(3] | - i TV'

»

Prieritize branches and remotes in LeftPanel... - nEchd?-i I Authar Gerhard Olsson <6248932+ gerhardol@
———— . .. Date: 1 week ago (09/04/2023 00:26:14)
master |upstreamfmaster Pricritize bran... SSSB?SEZ Committer: GitHub <noreply@github.com>
Bump vNext to 4.2 ihllS-’-lEBbE Commit hash:  66867165463bb383cdfT036d152d56a6f
v Child: f0debbBl
Rename to "LeftPanel” in hotkeys (#10857) @ roaeens Parent: T5c701ef
T

Enter File Name
Reset renamed index files (#10833) Ren: Form|

Filter toolbar: Show reflog first and def1

Restore frerm minimized: Cenfigurable ReportForm.Designer.cs

) BugReporter/BugReportForm.cs
I5criptHestControl. CurrentBranch() te BugReporter/UserEnvironmentinformation.cs
GitCommands/ExternalLinks/ExternallinkFormat.cs
GitExtUtils/GitUl/ Theming/BmpTransformatien.cs

Eé . - o)
== Diff %8 fileiEi=e J:) GPG @M Cons GitExtensionsShellEx/Resources/information.ico

» - .github GitUl/Avatars/ TemplateFormatter.cs
s tools GitUl/CommandsDialogs/AboutBox Dialog/FormCantributors.cs
5 5| wrscode GitUl/CommandsDialogs/BrowseDialog/DashboardControl/FormDashboard CategoryTitle.Designer.cs
. - GitUl/CommandsDialogs/BrowseDialog/DashboardControl/FormDashboard Category Title.cs
» e assets GitUl/CommandsDialogs/BrowseDialog/DashboardControl/FormDashboard Category Title.resx
» Bin GitUl/CommandsDialogs/BrowseDialog/FormBisect.Designer.cs
» +__ BugReporter GitUl/CommandsDialogs/BrowseDialog/FormBisect.cs
s Externals GitUl/CommandsDialogs/BrowseDialog/FormBisect.resx
)‘ ) GitCommands GitUl/CommandsDialogs/BrowseDialog/FormBrowseMenus.cs
- . GitUl/CommandsDialogs/BrowseDialog/FormBrowseltil.cs
? = GitExtensions GitUl/CommandsDialogs/BrowseDialog/FormChangelog.Designer.cs
» - GitbxtensionsShellEx GitUl/CommandsDialogs/BrowseDialog/FormChangelog.cs
» - GitExtSshAskPass GitUl/CommandsDialogs/BrowseDialog/FormChangelog.resx
)'_ © GitExtUtils GitUl/CommandsDialogs/BrowseDialog/FormDonate.Designer.cs
» L Gitll
» - IntegrationTests
> Logo
4.3.4 GPG

Show the GPG key for signed commits.

4.3. Tabs 19



Git Extensions Documentation, Release 4.1

4.3.5 Console

Show Git terminal.

4.3.6 Build report

Optional, only shown if the build server plugin is configured for the repo and if it has found a build for the selected
commit. Show build result page

4.4 Left panel

Show local and remote branches, git remotes, tags, submodules and stashes.

4.4. Left panel 20



CHAPTER B

Commit

A commit is a set of changes with some extra information. Every commit contains the following information:
* Changes
* Committer name and email
e Commit date
¢ Commit message
 Cryptographically strong SHA1 hash

Each commit creates a new revision of the source. Revisions are not tracked per file; each change creates a new
revision of the complete source. Unlike most traditional source control management systems, revisions are not named
using a revision number. Each revision is named using a SHA1, a 40 long characters cryptographically strong hash.

5.1 Commit changes

Changes can be committed to the local repository. Unlike centralised source control management systems you do not
need to checkout files before you start editing. You can just start editing files, and review all the changes you made in
the commit dialog later. When you open the commit dialog, all changes are listed in the top-left.

21



Git Extensions Documentation, Release 4.1

X |
| 1 | & Working directory changes ~ diff --git a/source/commit.rst b/source/commit.rst ~ ‘
index 972dd6d7..a3cee558 100644 |
| ar Expression. M ----a/source/commit.rst |
# browse_repository.rst ~ +++-b/source/commit.rst
| & s ce/getting_started.rst @@--22,7-+22,7- @@ Changes can-be-committed: to:the:local-repository.-Unlike:centralised-source:cont
7 tall/destination.png 22 22 checkout files before you start editing. You can just start editing files, and review all the changes you made in the commit

X

tall/git_missing png
24 24

Y

|
23 23 dialog later. When you open the commit dialog, all changes are listed in the top-left. }
|

- @@--102,7-+182,7-@@- pane. - I -you-have -already- staged-the -changes-then-you must- first-unstage-them-as
102 102 file, select the file in the unstaged changes pane, right-click and choose "“Reset file or directory changes™™ or press the
103 183 "TRTT key.
104 104
105  -..-image::-/images/conmit_reset_changes.png
105 +..-image:: - /images/commit/commit_reset_changes.png
mmit_amend_reset_auth. 106 106

, 25 .. -image:: - /images/conmit_dialog.png
“ 25 +..-image::-/images/commit/commit_dialog.png
# source/images/install/ready.png 5 |
/ 27 27 There are three kinds of changes
| & e/images 28 28 |
4 mages/settings/settings.png @@--42,7-+42,7-@@" staging- them, -but-they -will:show- every-time. - You: can- instead-add-them-to-the*". |
s nstallrst 42 42 in the ".gitignore " file will not show up in the commit dialog again. You can open the " .gitignore " editor from the menu
7 source/settings.st 43 43 ““Horking dir changes™ by selecting “"Edit ignored files " ‘
(Y . 44 44
ges/browse/advance,filter_dialog pg . 5 .
45 /images/commit_menu_edit_ignored.png
o source/images/browse/advance filter_dialog.png = ‘
N fimages/conmit/conmit_menu_edit_ignored.png
4 source/images/browse/find_in file_tree.png ~| 45 |
47 47 Making a commit is a two ste| rocedure
L ‘ @ Unstage 8 stage ‘ 8 T g p p ‘

» 2
/' source/commiturst
&/images/browse/commit_contextual menu.png

mmit/commit_dialog_commit.png (so mmit dislog_commitpng] 107 107 You can reset individual changed lines in a similar way to staging and unstaging individual lines, which are described above.

‘commit_dialog_spellchecker 188 188 To reset an individual line, select the line or lines in the diff view on the right then right-click and chosse ~~Reset

mmit/commit_dialog_spellchecker.png (source/image
AR source/images/commit/commit_dialog.png (source/images/commit_dlialog. png) @--115,7-+115,7-@@-Making- the- commit ©

ree/images/commit_menu_edit_ignored € >

mages/commit/commit_menu_edit_ignored.png
e/images/commit/commit_reset_changes.png (source/images/commit_reset_changes.png

Y Commit 5 Commit message = (= Commit templates ~ |14, Create branch Options ~

Screenshots for 4.1
4 Commit & push

Some minor text editing
[J Amend commit
(% Stash staged changes
4 Resetall changes

&

< >

Committer Gerhard Olsson <gerhardol@users.nareply.github.com> ¥ fprepare-4.1 — origin/ /prepare-4.1  Staged 10/43 Ln 3  Col 24

There are three kinds of changes:

Un- This file is not yet tracked by Git. This is probably a new file, or a file that has not been committed to
tracked Git before.

Modified | This file is modified since the last commit.

Deleted This file has been deleted.

When you rename or move a file Git will notice that this file has been moved and notice in index pane (not in working
directory).

During your initial commit there are probably lots of files you do not want to be tracked. You can ignore these files by
not staging them, but they will show every time. You can instead add them to the . git ignore file of your repository.
Files that are in the . gitignore file will not show up in the commit dialog again. You can open the .gitignore
editor from the menu Working dir changes by selecting Edit ignored files.

5.1. Commit changes 22



Git Extensions Documentation, Release 4.1

% Commit to feature/prepare-4.1 (C:\dev\gc\gitexter

LY ] ||'E' Working directory changes v|

Filtel Show ignored files
& s Show skip-worktree files
/? 5 Show assumed-unchanged files
& 50 o/ Show untracked files
& s
» Delete selected files
& s
__/f* . Reset selected files
’/?5: #: Reset unstaged changes
,/:: 0 s Reset all (tracked) changes
" 5
/:* B cdit ignaored files
& s
/?*H «  Edit locally ignored files
& s Delete all untracked files
+ < Selection filter =n
%4

ﬂi‘ source/images/browse/find_in_file_tree.png

i | @ Unstage

Making a commit is a two step procedure:

* Adding to index (staging) the changes to be committed, which saves a snapshot of the changes into the Git
“index”.

» Committing those staged changes, which records the staged changes and other information into the repository.

You do not have to commit immediately after staging changes. You can close the commit dialog, make further changes
to the files in the working dir, then re-open the commit dialog to stage further changes and commit. Changes that you
have staged previously will still be staged when you re-open the dialog.

5.1.1 Staging changes

The changes that you have made to your working directory are not automatically included in a commit. You must
choose which of the changed files, or individual changes from within those files, will be included in the commit by
“staging” the changes in Git Extensions. Staging changes in Git Extensions is the same as using git add on the Git
command line.

You can stage the changes you want to commit by selecting the files in the top-left or “Unstaged changes” pane and
pressing the Stage button or pressing the S key. The file entries will move to the lower left or “Staged changes”
pane. You need to stage deleted files because you stage the change and not the file. If you have staged changes from a
file and you wish to exclude those changes from the commit, select the entry in the staged changes pane and press the
Unstage button or press the U key.

If the file that is selected in either the unstaged or staged changes pane is text format, Git Extensions will show a Git
“diff” view in the right side pane of the window.

5.1. Commit changes 23



Git Extensions Documentation, Release 4.1

5.1.2 Staging selected lines

You do not have to commit all of the changes in a text format file in one commit. You can select and stage individual
lines from within a file such that only the chosen lines will be included in your next commit; the remaining changes in
the file will appear as unstaged changes for the next commit.

In the diff view on the right, select the line or lines that you want to stage then right-click and choose Stage
selected line (s) or press the S key. The file will now appear in both the staged changes and unstaged changes
panes on the left since now there are both staged and unstaged changes in the same file. The change that was selected
will disappear from the diff view on the right because the diff view is showing only the unstaged changes.

To see the line changes that have been staged select the entry for the file in the staged changes pane. To unstage
selected changed lines from a file, select that file in the staged changes pane, then select the line or lines in the diff
view, right -click, and choose Unstage selected line (s) or press the U key.

Note: If you select an entire line including the end-of-line character then staging or unstaging that line will include
both the selected line and the next line. To select a single line to stage or unstage you may simply click onto the line
without selecting any particular characters.

Staging and unstaging individual lines from a file does not change the file itself. It is simply choosing which changes
from within that file will be included in the next commit.

5.1.3 Undoing or resetting changes

You can undo or reset changes to files from the commit dialog. You can only do this from the top-left or “Unstaged
changes” pane. If you have already staged the changes then you must first unstage them as described above. To
reset the changes in a file, select the file in the unstaged changes pane, right-click and choose Reset file or
directory changes or press the R key.

5.1. Commit changes 24



Git Extensions Documentation, Release 4.1

/ source/images/install/language.png
/ sourcefimages/install/options.png

/scurc&-’imagez;’
/Ecurc&’images_
/scurce.-'images,-'

install/ready.png
stall/scope.png

install/welcome.png

/ source/images/settings/settings.png

/scurc&-'install.rst

+ source/images/broj
4 source/images/brol
4 source/images/brol

ﬁ | @ Unstage

Filter files using a regy
/ source/commit.rst
+ sourcefimages/brol
= cpurce/images/co
A& sourcefimages/bro
AA sourcefimages/co
A& spurcefimages/co
A& sgurcefimages/co
A& sourcefimages/co
Ba source/images/co
Ba source/images/co

i

N

[

el W

o

Stage

Reset file or directory changes

Reset chunk of file
Interactive Add

Open with difftool
Open

Qpen with..,

Edit file

Delete file

Copy full path

Show in folder

View file history

Add file to .gitignore

Add file to .git/info/exclude
Stop tracking this file

Skip worktree

Assume unchanged

Open in Visual Studio

Sert bv..

Shift+F4
Ctrl+Shift+F4
F4

Del

L

@ Stage | @

-

)
imend_reset_auth:
| commit.png)

elog_spellchecker

enu_edit_ignored

anges.png)

1213 1215
1216 --+See-also- :ref: worktrees™ - for-othe
1216 +- -See-also-:ref: worktrees™ -for-Git-

1217 1217

1218 1218 .. settingspage:: Config

1219 1219

& r =} Commit message + (=]
(] Commit g

Screenshots for 4.1
@& Commit & push
Some minor text editing
[ Amend commit

f_‘ Stash staged changes
#. Resetall changes

*

You can reset individual changed lines in a similar way to staging and unstaging individual lines, which are described
above. To reset an individual line, select the line or lines in the diff view on the right then right-click and choose
Reset selected lines or press the R key.

lines.

Warning: Resetting changes modifies the file, discarding either all of the changes or the changes on the selected

5.1.4 Making the commit

When all the changes you want to commit are staged, enter a commit message into the lower-right pane and press the

commit button.

5.1. Commit changes

25



Git Extensions Documentation, Release 4.1

3¢ Commit to feature/i3693-doc-3.00 (F\devigc\gitextensions_4\GitExtensionsDoc)

[+ | =} Working directory changes ~

source/commitrst
source/images/commit_dialog.png

source/images/reset_changes.png

source/images/commit_reset_changes.png ()

4

"@ | ‘@ Unstage @ Stage | @

- E
=} Commit message -

—

ks Commit
& Cormmit & push
[] stage in Superproject
[] Amend Commit
#: FResetall changes

. Reset unstaged changes

There is a built-in spelling checker that checks the commit message. Incorrectly spelled words are underlined with a
wavey red line. Right-click on the misspelled word to choose the correct spelling or choose one of the other options.

Git Extensions installs a number of dictionaries by default. You can choose another language in the context menu
of the spelling checker or in the settings dialog. To add a new spelling dictionary add the dictionary file to the
Dictionaries folder inside the Git Extensions installation folder.

5.1. Commit changes 26



Git Extensions Documentation, Release 4.1

F e

B = B
) Commit = Commit message Commit templates = I3 Create branch

Incorrect speling

4 Commit & push

spelling
[] Stage in Superproject SPiElil-'bg
[ ] Amend Commit spewing
suppling
#:  Resetall changes spooling
Add to dicticnary
- Ignore word
Remove word
Cut
Copy
Paste
Delete
Select all
| Dictionary " None
Mark ill formed lines de-DE
en-All
en-Ch
en-GB
en-Us
es-ES
es-MX
fr-FR
it-1T
nl-ML
pl-PL
ro-RO
ru-RLU

5.2 Amend commit

It is also possible to add changes to your last commit by checking the Amend Commit checkbox. This can be very
useful when you forgot some changes. This function rewrites history; it deletes the last commit and commits it again
including the added changes.

See also Modify Git history, especially if you have published the changes to a remote repository already.
Amend also enables the following options:

* By checking the Reset Author checkbox the author and date of the commit will also be overwritten.

5.2. Amend commit 27



Git Extensions Documentation, Release 4.1

* Reset soft: Perform a soft reset to the previous commit; leaves working directory and index untouched

&= Commit
Suppress

P

(] Commit
ir  Commit & push

Stage in Superproject
Amend commit
[ ] Reset author

t_'* Stash staged changes
¥
¥

5.2. Amend commit

28



CHAPTER O

Branches

Branches are used to commit changes separate from other commits. It is very common to create a new branch when
you start working on a feature to keep the work done on that feature separate from other work. When the feature is
complete the branch can be merged or rebased as you choose such that the commits for the feature either remain as
a parallel branch or appear as a continuous single line of development as if the branch had never existed in the first
place. The image on the right illustrates a branch created on top of commit B.

You can see the name of your current branch in a combo box in the toolbar. You can switch to another branch by
choosing from the combo box list. In the commit log the current branch has an arrow head to the left of its name. If
you are not currently on a branch because you have checked out a specific commit but not any particular branch then
Git Extensions will show (no branch) in place of a branch name in the toolbar. This is called “Detached HEAD
mode”. In Git you can refer to your current branch or commit by the special reference HEAD in place of the branch
name or commit reference.

[ %] | | -
I“_‘-‘|_ |

1

Chdevigcgitextensionsdoc, + Jo feature/prepare-4.1 v| {f - 1t

29



Git Extensions Documentation, Release 4.1

6.1 Create branch

In Git Extensions there are multiple ways to create a new branch. In the image below I create a new branch from the
context menu in the commit log. This will create a new branch on the revision that is selected.

b release/4.0 [ upstream/release/4.0 Updat
Replace sync CommithMessaaeMananer APl with

c [ Copyto clipboard 3
F [, Merge into current branch... 3
d= Bebase current branch on »

#. Reset current branch to here...

3y Cn:nmrr|,h, Create new branch here... Ctrl+B

I will create a new branch called feature/my_branch. In this branch I can do whatever I want without affecting
others. The default in Git Extensions is to check out a new branch after it is created. If you want to create a new branch
but remain on your current branch, uncheck the Checkout after create checkbox in the Create branch
dialog.

X

Branch name |Featurefm}r_|:|ranch |

Create branch at this revision |E.4fb5d93 |'§ -1

Checkout after create
B4fb3d33

Replace sync CommitMessageManager APl with async (#10930)

Author: lgor Velikorossov
Commit dater 18 hours age (2023-05-01 00:31:12)
Branchies): n/a
Tag(s): n/a
Orphan
[] Create orphan Clear working directory and index

I.E&. Create branch

When the branch is created you will see the new branch feature/my_branch in the commit log. If you chose to
checkout this branch the next commit will be committed to the new branch.

6.1. Create branch 30



Git Extensions Documentation, Release 4.1

release/4.0 | upstream/release/4.0 Update change log

Working directory €

Commit index

p feature/my_branch Replace sync CommitMessageManager APl with async (#1093(

Some recent repositories settings improvements (#10903) Configure repositories popup: B

Creating branches in Git requires only 41 bytes of space in the repository. Creating a new branch is very easy and fast.
The complete work flow of Git is optimized for branching and merging.

6.1.1 Orphan branches

In special cases it is helpful to have orphan branches (see for example https:/www.google.com/search?q=why-+use+
orphan+branches+in+git). Check the “Create orphan” checkbox to create an orphan branch (-—orphan option in

git).
The newly created branch will have no parent commits.

The option “Clear working dir and index” (git rm -rf) is active by default. So the working dir and index will be
cleared. If you uncheck the last option then the working dir and index will not be touched.

6.2 Checkout branch

You can switch from the current branch to another branch using the checkout command. Checking out a branch sets
the current branch and updates all of the source files in the working directory. Uncommitted changes in the working
directory can be overwritten so it is best practice to make sure your working directory is clean by either committing
or stashing any current changes before checking out a branch. If you do not clean your working directory then, in the
Checkout branch dialog, you can choose between four options for your local uncommitted changes:

Don't Local changes will be retained if there are not conflicting changes from the branch you are checking

change out.

Merge Performs a three-way merge between your current branch, your local changes and the branch you are
checking out.

Stash Your local changes are stashed and the new branch is checked out. You can retrieve your changes on
the new branch with stash-pop.

Reset Your local changes are discarded and the new branch is checked out. Use caution with this option as
Git has no record of uncommitted changes so they cannot be retrieved.

F
I‘. " [ Copyto clipboard 3

’ |z, Checkout branch... bl B release/4.0

WL, Merge into current branch... 3

! b |2t Rebase current branch on »

- —

e

I upstream/release/4.0

=l

6.2. Checkout branch 31


https://www.google.com/search?q=why+use+orphan+branches+in+git
https://www.google.com/search?q=why+use+orphan+branches+in+git

Git Extensions Documentation, Release 4.1

6.3 Merge branches

In the image below there are two branches, [feature/refactor] and [master]. We can merge the commits
from the master branch into the feature/refactor branch. If we do this, the feature/refactor branch will be up to date
with the master branch, but not the other way around. As long as we are working on the feature/refactor branch we
cannot touch the master branch itself. We can merge the sources of master into our branch, but cannot make any
change to the master branch.

Working directory &

Commit index (]

dummy cemmit

master | upstream/master | Update translations at 75%
Merge branch 'release/4.0'

release/4.0 | upstream/release/d.0| Update change log

I Replace sync CommitMessageManager AP| with async (F10

To merge the feature/refactor branch into the master branch, we first need to switch to the master branch.

feature/refactor  durnmy cornmit 2
durmnmy commit

Working directory &

Commit index (]

b master [> upstream/master tmp/dummy3 Update trans|

Merge branch ‘release/4.0'

release/4.0  upstreamn/release/4.0 Update change log

Replace sync CommitMessageManager AP with async (F10930) R

Some recent repositories settings improvements (F10903) Configu

Once we are on the master branch, select the feature/refactor branch and select merge. Alternatively choose Merge
branches from the Commands menu and select the feature/refactor branch.

feature/refactor sl

Copy to clipboard

I-I:
durmnmy commit
\¥3,  Checkout branch... »
Working directory |m Merge into current branch.. N " B feature/refactor
Commit index 4L Rebase current branch on 3
p master [> upst| 42 Reset current branch to here... fions at 75%

Merge branch 'releas Create new branch here.. Ctrl+B

e b

Rename branch... 3

release/4.0 | upstre

6.3. Merge branches 32



Git Extensions Documentation, Release 4.1

In the merge dialog you can verify which branch you are working on, as well as set advanced merge options (see
Advanced Merge Options). Select the branch to merge with then click the Merge button.

Hide help Merge
Hover to see scenario when fast forward is possible,
Merge branch feature/refactar =
merge commi oM current Into current branch  master

(® Keep a single branch line if possible (fast forward)
() Always create a new merge commit
[] Do net commit

Show advanced options

[] Use non-default merge strategy
[] Squash commits

[] Allow unrelated histories
[] Add log messages 20

[] Specify merge message

o square = grean =
il current branch new commil

postfix for files if
FARA marge conflicls occur

After the merge the commit log will show the new commit containing the merge. Notice that the feature/refactor
branch is not changed by this merge. If you want to continue working on the feature/refactor branch you can merge
the feature/refactor branch with master. You can instead delete the feature/refactor branch if it is not used anymore.

Working directory

Comrmit index

p master Merge branch ‘feature/refactor’
feature/refactor  dummy commit 2
dummy commit

[» upstream/master tmp/dummy3 Update translati
Merge branch ‘release/4.0'

=

release/4.0  upstreamn/release/4.0 Update change log

For more information about merge conflicts and further options, see Merge Conflicts.

6.3.1 Advanced Merge Options

The Show advanced options checkbox will show the following options when activated:

6.3. Merge branches 33



Git Extensions Documentation, Release 4.1

 Use non-default merge strategy, with a drop-down field for selecting the alternate merge strategy. The strategies
are:

resolve

# This can only resolve two heads (i.e. the current branch and another branch you pulled from) using
a 3-way merge algorithm. It tries to carefully detect criss-cross merge ambiguities and is considered
generally safe and fast.

recursive

# This can only resolve two heads using a 3-way merge algorithm. When there is more than one com-
mon ancestor that can be used for 3-way merge, it creates a merged tree of the common ancestors and
uses that as the reference tree for the 3-way merge. Additionally this can detect and handle merges
involving renames. This is the default merge strategy when pulling or merging one branch.

octopus

# This resolves cases with more than two heads, but refuses to do a complex merge that needs manual
resolution. It is primarily meant to be used for bundling topic branch heads together. This is the
default merge strategy when pulling or merging more than one branch.

ours

# This resolves any number of heads, but the resulting tree of the merge is always that of the current
branch head, effectively ignoring all changes from all other branches. It is meant to be used to super-
sede old development history of side branches.

subtree

# This is a modified recursive strategy. When merging trees A and B, if B corresponds to a subtree of
A, B is first adjusted to match the tree structure of A, instead of reading the trees at the same level.
This adjustment is also done to the common ancestor tree.

* Squash commits
* Allow unrelated histories
* Add log messages, with an input field for specifying number of log messages to add

» Specify merge message, with an input field for specifying a custom merge message

6.4 Rebase branch

The rebase command is very similar to the merge command. Both rebase and merge are used to get a branch up-to-date.
The main difference is that rebase can be used to keep the history linear contrary to merges.

6.4. Rebase branch 34



Git Extensions Documentation, Release 4.1

Working directory &9

Commit index )

durmnmy commit

master | upstreamn/master Update translations at 73%
Merge branch 'release/4.0'

release/4.0 | upstreamn/release/4.0 Update change log

I Replace sync CommithessageManager AP| with async (#F10

- : "o - v rmammnn -
Select the commit where you want to to rebase the current branch.

Working directory &

Commit index (]

p feature/refactor dummy commit 2

durmmy cormmit

O I aa——
] Copyto clipboard 3

Merge branch 'relea
|$3  Checkout branch... »

I /4.0 trel oo .

— Hpstre W, Merge into current branch... »

Replace sync Comm | 2L Rebase current branch on > | Selected commit

Some recent reposit{ 4, Reset current branch to here... Selected commit interactively... £

Update translations 7 |fs,  Create new branch here...  Ctrl+B Selected commit with advanced options...
3% n : '

A rebase of feature/refactor on top of master will perform the following actions:
* The branch feature/refactor will be moved to the master branch

* The commits in the previous feature/refactor branch will be recommitted in the moved feature/refactor branch

Note: During a rebase merge conflicts can occur. You need to solve the merge conflicts for each commit that is
rebased. The rebase function in Git Extensions will guide you through all steps needed for a successful rebase.
See Merge Conflicts for more information.

6.4. Rebase branch 35



Git Extensions Documentation, Release 4.1

¥

Hide help

|

postfix for files if
| P AN merge conflicts ocour
|
|

current

other

g cavare = green =
il current branch new commit

Rebase current branch on top of another branch

Current branch:  feature/refactor

Rebase on |1bbcl(DOT%D(fb4916b6564478331140d607d1f ~

[ Interactive Rebase [ ] Preserve Merges Autosguash Auto stash  [] Ignore date [ Committer date is author date

[ Specific range  From (exc.) To |feature/refactor

Commits to re-apply:

Commit

Status  Action hash

Subject Author Date

The image below shows the commit log after the rebase. Notice that the history is changed and it seems like the
commits on the feature/refactor branch are created after the commits on the master branch.

Working directory

Commit index

p feature/refactor dummy commit 2

dummy commit

master  trp/dummy3  upstream/rnaster Update

Merge branch ‘release/4.0'

release/4.0

upstream/release/4.0 Update change |

Replace sync CommitMessageManager AP| with asyn

Warning: Because this function rewrites history you should only use this on branches that are not published to
other repositories yet. When you rebase a branch that is already pushed it will be harder to pull or push to that
remote. If you want to get a branch up-to-date that is already published you should merge.

6.5 Interactive rebase

It is possible to modify the order, merge commits etc when committing.

See Modify Git history for more information.

6.6 Squash

Git has no native squash operation, it can be done with various combinations of rebase and reset. This is described in

the Git Extensions wiki.

6.5. Interactive rebase

36


https://github.com/gitextensions/gitextensions/wiki/How-To%3A-Squash-and-Rebase-your-changes

Git Extensions Documentation, Release 4.1

See Modify Git history and Git documentation for more information.

6.7 Delete branch

Since it is common to create many branches, it is often necessary to delete branches. Most commonly you will need to
delete branches on which work has finished and their contents are merged into master or your main branch. You can
also delete unmerged branches when they are not needed anymore and you do not want to keep the work done in that
branch.

When you delete a branch that is not yet merged, all of the commits that are in only the deleted branch will be lost.
When you delete a branch that is already merged with another branch, the merged commits will not be lost because
they are also part of another branch.

You can delete a branch using Delete branch from the Commands menu. If you want to delete a branch that is
not merged into your current branch (HEAD in Git), you need to check the Force delete checkbox.

Working directory &
Commit index (]

p feature/refactor dummy commit 2

dummy commit

w

A CIRERVONTH IR icr: T
M b

=rge oraf I3 Checkout branch.., 2

release/4.0 I, Merge into current branch... »
Replacesyn ZL  Rebase current branch on b D930) Resolves 210926
Some reces %2 Reset current branch to here... [ onfigure repositories popup: F
Update tran |l Create new branch here..  Ctrl+B
Merge brar %ﬁ Rename branch... 3
Translate'E||l* Delete branch... » | |E|  master

. Reset another branch to here... |IEI tmp/dummy3
Translate '
.. |<4& Create new tag here... Ctrl+T f|  upstream/master

Avoid "git == B

6.7. Delete branch 37


https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

CHAPTER /

Tag

Tags are used to mark a specific version. Usually a tag will not be moved anymore. The image below shows the
commit log of Git Extensions with a tag indicating version [3.00.00].

Avoid "git: warning: in the working copy of '<fil
L ] Merge tag 'vd.0.2' Servicing release for wd.0
v, 0.2 [...] Ensure release builds are clean

Update build scripts * Disable loc-related warning

Update changelog

Tags are also available in the Left panel.

7.1 Create tag

In Git Extensions you can tag a revision by choosing Create new tag in the commit log context menu. A dialog
will prompt for the name of the tag. You can also choose Create tag from the Commands menu, which will show
a dialog to choose the revision and enter the tag name.

38



Git Extensions Documentation, Release 4.1

Merge branch 'release/4.0'

release/d.0  upstream/release/4.0 Update chanc
U Copy to clipboard k
N 13
|f,  Checkout branch.., [ (3
W,  Merge into current branch... »
2L Rebase current branch on k
#. FReset current branch to here...
o7

|fs.  Create new branch here... Ctrl+B
{%‘ Rename branch... y P
g Delete branch... b lex
#. Reset ancther branch to here...

T |<,é, Create new tag here.., Ctrl+T

Once a tag is created, it cannot be moved again. You need to delete the tag and create it again to move it.

7.2 Delete tag

Tags can be deleted, read about “What should you do when you tag a wrong commit and you would want to re-tag?”
here: https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

W Delete tag >

Select tag ¥3.00.00 v| I Delete

This will delete the selected tag from the (local) repository.

[] Delete tag also from the following remote(s):

Ogerhardol

09 Help (includes information about deleting tags which are already pushed)

7.2. Delete tag 39


https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

CHAPTER 8

Remotes

Git is a distributed source control management system. This means that all changes you make are local. When you
commit changes, you only commit them to your local repository. To publish your local changes you need to push. In
order to get changes committed by others, you need to fetch/pull.

8.1 Manage remote repositories

You can manage the remote repositories in the Remotes menu or in the Left panel.

}{ both_changed_xxx (tmp/aa-rebase) - Git Extensions

Start | Repository | Mavigate View Commands  GitHub |
e |E “w Refresh F5 thanged oo, -
| File Explorer Ctrl+Shift+ 0

. Rermote repositories...

v Manage submodules...
Update all submodules

Synchronize all submeodules

@ Manage worktrees..,

When you cloned your repository from a public repository, this remote is already configured. You can rename each
remote for easy recognition. The default name after cloning a remote is origin. If you use PuTTY as SSH client
you can also enter the private key file for each remote. Git Extensions will load the key when needed. How to create a
private key file is described in the next paragraph.

40



Git Extensions Documentation, Release 4.1

K Remote repositories *

Remote repositeries  Default pull behavior (fetch & merge)

Edit Remote Details

Active

_go

ety = MName |_gO |

origin - Url |https:ﬁgithub.com."gerhardol."GitEx‘tensior v| ] Browse...

[ Separate Push Url

ml Save changes

In the Default pull behaviour tab you can configure the branches that need to be pulled and merged by
default. If you configure this correctly you will not need to choose a branch when you pull or push. There are two
buttons on this dialog:

Prune remote branches Throw away remote branches that do not exist on the remote anymore.
Update all remote branch info | Fetch all remote branch information.

S — : .
| x Remote repositories > |

| Remote repositories  Default pull behavier (fetch & merge) |

Local branch name Remote repository Default merge with (e
renamed_al |
renamed_ad
tmp/a
tmp/aa

v

Local branch name |master |

Remote repository | w |

| Default merge with | ~ |

Il Save changes

After cloning a repository you do not need to configure all remote branches manually. Instead you can checkout the
remote branch and choose to create a local tracking branch.

8.1. Manage remote repositories 41



Git Extensions Documentation, Release 4.1

8.2 Git Credential Manager

The Git Credential Manager can be used to authenticate https links. For more information and instructions, see
https://github.com/git-ecosystem/git-credential-manager.

8.3 Create SSH key

Git uses SSH for accessing private repositories. SSH uses a public/private key pair for authentication. This means you
need to generate a private key and a public key. The private key is stored on your computer locally and the public key
can be given to anyone. SSH will encrypt whatever you send using your secret private key. The receiver will then use
the public key you send to decrypt the data.

This encryption will not protect the data itself but it protects the authenticity. Because the private key is only available
to the sender, the receiver can be sure about the origin of the data. In practice the key pair is only used for the
authentication process. The data itself will be encrypted using a key that is exchanged during this initial phase.

8.3.1 PuTTY and github

PuTTY is SSH client that for Windows that is a bit more user friendly then OpenSSH. Unfortunately PuTTY does not
work with all servers. In this paragraph I will show how to generate a key for github using putty.

First make sure GitExtensions is configured to use PuTTY and all paths are correct, see SSH

x GitExtensionsDoc (feature/i13693-doc-3.00) - Git EBxtensions

Start  Repository Mavigate View Commands  GitHub  Plugins | Tools | Help

Git bash Ctrl+G P Tt ) t'&m - = @ | Bram
L GitGul

Search: feature/ui-refresh  _go/feature/ui-refresh i Gitk

\_f--— Branches (4)

("] | == v| ﬂ * F\dev\gc\gitextensions_4\GitExtensionsDoc + fez

- Io feature Working directory /" 4 2 @ PuTTY 2 | @ Start authentication agent
bl ui-refresh commitindes | Gitcemmandleg F12 E®  Generate or import key
I i5693-doc p featurefi5693-doc-3.00 [» _go/feature
i B 3.00-versic iGf Settings Ctrl+,
P master stash
-k release commit, split to stash, modify history

can choose Generate or import key to start the key generator.

8.2. Git Credential Manager 42


https://github.com/git-ecosystem/git-credential-manager

Git Extensions Documentation, Release 4.1

g PuTTY Key Generator * g PuTTY Key Generator X
File Key Conversions Help File Key Conversions Help
Key Key
Please generate some randomness by moving the mouse over the blank area Public ke')' for pasting into OpenSSH authorized_keys file
ssh-s
— ﬂM}\B&NzaC1‘,'c2EA.WBJQWOEﬂ.hFMUJIBw&gTyWR&lgE’rSsUn\quKiB]TtiuaIRfO
Jo+mBt6n

+5TBgkaVWCyCe0zQ SHv KKNKQbuR5Kyws6WBm AbJivdkeylkgmYrea YQXgi Bch&uﬁ
26k 3QixAFkcxdsnhwof NHuDEzB Xz Eb P 27w BHmBwnnn Lis X35

Key fingerprint |ssh-rsa 2048 b6:83.7df1b5:6a:d :c3:75:b5bd:ca:cadd:8c:03

Key passphrase: |

|
Key comment: |rsakey-20181210 |
|
|

Confirm passphrase: |

Actions Actions
Generate a public./private key pair Generate Generate a public/private key pair Generate
Load an existing private key file Load Load an existing private key file Load
Save the generated key Save public key Save private key Save the generated key Save public key Save private key
Parameters Parameters
Type of key to generate: Type of key to generate:

RSA DSA ECDSA ED25519 S5H-1(RSA) @ RSA (O DSA (OECDSA (O ED25519 () SSH-1(RSA)
Number of bits in a generated key: 2048 MNumber of bits in a generated key: 2048

PuTTY will ask you to move the mouse around to generate a more random key. When the key is generated you can
save the public and the private key in a file. You can choose to protect the private key with a password but this is not
necessary.

Now you have a key pair you need to give github the public key. This can be done in Account Settings in the
tab SSH Public Keys. You can add multiple keys here, but you only need one key for all repositories.

<« c o (© & GitHub, Inc. (US) | https://github.com/settings/ssh/new see g In @0 » =

Pull requests Issues Marketplace Explore

Personal settings SSH keys / Add new
Profile
Title
Account
Demo
Emails
Key
Motifications
ssharsa
Billing AAAABINZaC 1yc2EAAAABIQAAAQEARRAL]IBwSigTyWRS +g35sUnv2gKi3jT4uZjIRfFOJo+mbten+5TBgKaVWCyCe0zQ
SFvKKNKQbuR5KywsE6WBm3IbllvdkeyOkgmYreaYQXgiBoh5u626k3 QixAFkadsnhwofNHUOEzBXzELP27vBHmMBwnnnUs
SSH and GPG keys X35+ 1XMmESEeD)jsvhaiGrSCnVPm LZybKImxQPmNGM /LI 8BmNOKT g/TDQG5uck1CCqlEoUktS8k
JH+|j+bdlaHdPItOP8iAsBftlbcVmeMzrSqljJPJYET +oLMuOSWyS5Rb1iT7Wazxtd TTT HiXUEPNFCVRxh +cToQfE 1 TyPzBkg
Security 26Q4+Zzwkw== rsa-key-20181 210|
Sessions

Blocked users

Repositories Add S5H key

Organizations v

After telling github what public key to use to decrypt, you need to tell GitExtensions what private key to use to encrypt.
Load the private key into the PuTTY authentication agent in Clone dialogue or by starting the PuTTY authentication
agent and choose add key in the context menu in the system tray.

GitExtensions can load the private keys automatically for you when communicating with a remote. You need to

8.3. Create SSH key 43



Git Extensions Documentation, Release 4.1

configure the private key for the remote.

This is done in the Manage remote repositories dialog.

8.3.2 OpenSSH and github

To configure GitExtensions to use OpenSSH, see SSH.

OpenSSH is the best SSH client there is but it lacks Windows support. Therefore it is slightly more complex to use.
Another drawback is that GitExtensions cannot control OpenSSH and needs to show the command line dialogs when
OpenSSH might be used. GitExtensions will show the command line window for every command that might require
a SSH connection. For this reason PuTTY is the preferred SSH client in GitExtensions.

To generate a key pair in OpenSSH you need to go to the command line. I recommend to use the git bash because the
path to OpenSSH is already set. Open the separate Git bash or the console tab.

| &F - @ 2 Commit(3®) [F |14 &

Type the following command: ssh-keygen -t ed25519 —-C "your@email.com" Use the same email ad-
dress as the email address used in git. You will be asked where if you want to protect the private key with a
password. This is not necessary. By default the public and private keys are stored in c:\Documents and
Settings\[User]\.ssh\orc:\Users\ [user]\.ssh\.

Update to GE icons

B Commit EZ pif % Filetree J° GPG B Console

You do not need to tell GitExtensions about the private key because OpenSSH will load it for you. Now open the
public key using notepad and copy the key to github. This can be done in Account Settings in the tab SSH
Public Keys on GitHub.

8.3. Create SSH key 44


https://github.com

Git Extensions Documentation, Release 4.1

8.4 Pull changes

You can get remote changes using the pull function. Before you can pull remote changes you need to make sure there
are no uncommitted changes in your local repository. If you have uncommitted changes you should commit them or
stash them during the pull. You can read about how to use the stash in the Stash chapter.

L] |_ v| * | Chdevigchgitextensionsdoch, = I feature/prepare-4.1 v| {f - @ 1t ) Commit (2) 1-__+ -

In order to get your personal repository up-to-date, you need to fetch changes from a remote repository. You can do
this using the Pull dialog. When the dialog starts the default remote for the current branch is set. You can choose
another remote or enter a custom url if you like. When the remote branches configured correctly, you do not need to
choose a remote branch.

If you just fetch the commits from the remote repository and you already committed some changes to your local
repository, the commits will be in a different branch. In the pull dialog this is illustrated in the image on the left. This
can be useful when you want to review the changes before you want to merge them with your own changes.

Hide help Pull from
(® Remote [All] ~ | |== Manage remotes
O URL
Branch
remote
repository Local branch | |
Remote branch | v|

Merge options
Merge remote branch into current branch
Rebase current branch on top of remote branch, creates linear history (use with caution)

® Do not merge, only fetch remote changes

Tag options

(® Follow tagopt, if not specified, fetch tags reachable from remote HEAD
nzﬂrg‘i branch (O Fetch notag
(O Fetch all tags

[ Prune remote branches

[ Prune remote branches and tags

Solve conflicts Stash changes [ Auto stash

When you choose to merge the remote branch after fetching the changes a branch will be created, and will be merged
into your commit. Doing this creates a lot of branches and merges, making the history harder to read.

8.4. Pull changes 45



Git Extensions Documentation, Release 4.1

Hide hel ) ) ) Pull from
Hover to see scenario when fast forward is possible. )
(® Remote upstream ~ | |== Manage remotes

menge commit
¢ Bl current () URL https://github.com/gitextensions/gitextensions.gi
% REMOTE
other Branch
remote Local branch master
repository -
Remote branch master v
current
# LOCAL Merge options
@, Merge remote branch into current branch
(O) £ Rebase current branch on top of remote branch, creates linear history (use with caution)
(O) Do not merge, only fetch remote changes
Tag options
(® Follow tagopt, if not specified, fetch tags reachable from remote HEAD
square = reen =
Ll current braneh o fiaw commil () Fetch no tag
o AAA postfix for files if Fetch Q” tage

merge conflicts ocour
Prune remote branches

Prune remote branches and tags

Solve conflicts Stash changes [ Auto stash 3 Pull

Instead of merging the fetched commits with your local commits, you can also choose to rebase your commits on top
of the fetched commits. This is illustrated on the left in the image below. A rebase will first undo your local commits
(c and d), then fetch the remote commits (e) and finally recommit your local commits. When there is a merge conflict
during the rebase, the rebase dialog will show.

Hide hel Pull from
(® Remote upstream ~ | |== Manage remotes
(O URL https://github.com/gitextensions/gitextensions.gi
4 LOCAL
other Branch
remote Local branch master
repository

Remote branch master -

current

% REMOTE Merge options

O, Merge remote branch into current branch
(® /L Rebase current branch on top of remote branch, creates linear history (use with caution)

(O Do not merge, only fetch remote changes

Tag options

(®) Follow tagopt, if not specified, fetch tags reachable from remote HEAD

square = green =
il current branch new commil O Fetch no tag
ostfix for files if
oann P Fetch all tags

marge conflicts eoour
Prune remote branches

Prune remote branches and tags

Solve conflicts Stash changes [ Auto stash & Pull

Next to the pull button there are some buttons that can be useful:

8.4. Pull changes 46



Git Extensions Documentation, Release 4.1

Solve When there are merge conflicts, you can solve them by pressing this button.

con-

flicts

Stash When the working dir contains uncommitted changes, you need to stash them before pulling.

changes

Auto Check this checkbox if you want to stash before pulling. The stash will be reapplied after pulling.
stash

Load This button is only available when you use PuTTY as SSH client. You can press this button to load the
SSH key configured for the remote. If no key is set, a dialog will prompt for the key.

key

8.5 Push changes

In the browse window you can check if there are local commits that are not pushed to a remote repository yet. In the
image below the green labels mark the position of the master branch on the remote repository. The red label marks the
position of the master branch on the local repository. The local repository is ahead one commit.

To push the changes press Push in the toolbar.
ins  Toocls  Help
efprepare-4.1 v| &f ~ i 1t :_‘; Commit (32) +__+ - | Ml - BN

Working directory &7 30 o] =
Commit index
p feature/prepare-4.1 Screenshots for 4.1 Move images to spec

[+ origin/feature/prepare-4.1 | & ficup! 4.1 handling of wsl.localhost

= ' - v . B ovne o oo '

The push dialog allows you to choose the remote repository to push to. The remote repository is set to the remote of
the current branch. You can choose another remote or choose a url to push to. You can also specify a branch to push.

b4 |
|
Push to
(@ Remote origin | |5 Manage remotes l
O Ul https://github.com/gitextensions/GitExtensionsDoc.git

Push branches  Pushtags Push multiple branches |

Branchtopush | TR bl ot prepare-4 1 v
[] Force with lease [ ] Force push Recursive submodules | Mone ~

[] Replace tracking reference
[ Create pull request after push

8.5. Push changes 47



Git Extensions Documentation, Release 4.1

Tags are not pushed to the remote repository. If you want to push a tag you need to open the Tags tab in the dialog.
You can choose to push a singe tag or all tags. No commits will be pushed when the Tags tab is selected, only tags.

You can not merge your changes in the remote repository. Merging must be done locally. This means that you cannot
push your changes before the commits are merged locally. In practice you need to pull before you can push most of
the times.

8.5. Push changes 48



CHAPTER 9

Submodules

Large projects can be split into smaller parts using submodules. A submodule contains the name, url and revision of
another repository. To create a submodule in an existing git repository you need to add a link to another repository
containing the files of the submodule.

The structure of the submodules can be seen in the submodule toolbar and the Left panel.

9.1 Manage submodules

}{ gitextensionsdoc (feature/prepare-4.1) - Git Extensic

Start Bepnsitur}rlﬂavigate Yiew Commands

& |; Refrezh F35 !
| File Explorer Ctrl+Shift+0
- o
2 Remote repositories...
y Cﬂl Manage submodules...
_____ Update all submodules
v B Synchronize all submodules

v @ Manage worktrees...

- -

The current state of the submodules can be viewed with the Manage submodules function. All submodules are
shown in the list on the left.

49



Git Extensions Documentation, Release 4.1

% Submodules — O e
Mame Status Details
Externals/EasyHook Up-to-date Mame |EHternaIsti‘t.hub

|

Externals/Git.hub Up-to-date Remote path |..r’..fg'rta{tensionsfﬁ'rt.hub.g'rt |
Externals/ICSharpCode TextEditor Up-to-date Local path |E1{terna|sti't.hub |
Externals/conemu-inside Up-to-date Commit  |3312526b05db52f2c70cf10b37221€31361df677 |
Branch |remot5!origim’HEAD |

Status | Up-to-date |

Add submodule ~ Synchronize | ‘ L Update ‘ | Remove

Add sub- | Add a new submodule to the repository

module

Synchro- | Synchronizes the remote URL configuration setting to the value specified in . gitmodules for the

nize selected submodule.

Initialize Initialize the selected submodules, i.e. register each submodule name and url found in . gitmodules
into .git/config. The submodule will also be updated.

Update Update the registered submodules, i.e. clone missing submodules and checkout the commit specified
in the index of the containing repository.

Remove Remove the submodule from the repository

To change a submodule path, delete the existing submodule, move the filesystem directory and add it again in the new
location.

9.2 Add submodule

To add a new submodule choose Add submodule in the Manage submodules dialog.

W Add submodule >

Pathtosubmodule | https://github.com/pmiossec/GitExten | | Browse |
Lecal path | |

Branch | v|

[] Force | Add

Path to submodule

Path to the remote repository to use as submodule.

Local path

Local path to this submodule, relative to the root of the current repository.

Branch

Branch to track.

9.2. Add submodule

50



cHAaPTER 10

Worktrees

Git Extensions support Git worktrees: Multiple checked out working directories can share local branches. For more
information see the Git documentation.

}-{ gitextensions_4 (master) - Git Extensions

Start | Bepository | Mavigate View  Commanc

B |E Ty Refresh F5
File Explorer Ctrl+Shift+ 0

Remote repositories...

v £ Manage submodules...
Update all subrmodules

Synchronize all submodules

|@ Manage worktrees...

= Edit .gitignore
Edit .git/info/exclude
Edit .gitattributes
..... Edit .railmap
Edit .gitreview

Sparse Working Copy

Git maintenance 3

&

Repository settings

- Close(go to Dashboard)  Ctrl+W

51


https://git-scm.com/docs/git-worktree

Git Extensions Documentation, Release 4.1

}{ Existing worktrees x

Path Type  Branch SHA-1

Chdevigc\gitextensions Branch | tmp/go9-7 79f9e2! TA5EG] ¢ 10ed25404ddf3cdE0

Chdevigcgitextensions_2.51 | Branch | NikolayXHD/_toolbar [ f1561fadd44e326aThf46418055a28715deb0666ER

Chdevigcgitextensions_3 Branch |tmp/dummy3 1bbc2e007960cfk491 663644 78a2a11404607d1E

Chdevigc\gitextensions_4 | Branch | master 1kbc2c007960cfk4916b6364475aa11404607d1E

& Delete selected || Open selected
Prune deleted worktrees

Note for WSL

Note that Git creates worktrees with a full “native” path, the worktree is only usable with the Git executable creating
the path.

The path in the worktree file must be changed to a relative path if the worktree is to be used in both Windows and
WSL.

52



cHAPTER 11

Stash

If there are local changes that you do not want to commit yet and not want to throw away either, you can temporarily
stash them. This is useful when working on a feature and you need to start working on something else for a few hours.

You can stash changes away and then reapply them to your working dir again later. Stashes are typically used for very
short periods.

53



Git Extensions Documentation, Release 4.1

3 Stash — O >
Show: @{2} WIP on tmp/god-7: 3702c f ~ | “u & | @ 0| 1 | 1 fam| G 4[*] unicode uTF-g) - @ Sou A
Filter files using a regular expression... T ----afGitCommands/Git/GetAllChangedFilesOutputPar:
& GitCommands/Git/GetAllChangedFilesOutputPa +++-b/GitCommands/Git/GetAllChangedFilesOutputPar:
@@--181,11-+181,17 -@@-private-static-IReadOnlyLis
181 181 if (entryType-== """ || -entryTyp
182 182 {
183 183 Debug.Assert(line.Length > 2
R LR string-fileName-=-1line.Subst
R LR UpdateItemStatus(entryType, -
184 4errerrenssnnnsnanans string-untrackedFileName-=-1:
LEE frsoosossososco00500: UpdateItemStatus(entryType, -
5 demccmmcooncooosoaan oo continue;
186 187 }
1ET  mrresssasaaasaaas else-if-(entryType-==-"1"-||-ent
l < N 188 +
e 180 fennssanssannnann if-(entryType-!=-"'1"-&&-entryTym
. , : . 188 190 1
WIP on tmp,/go9-7: 3702c fixup! adding parsing test L] e J/-Unepected
L = continue;
o - J TR 1
194 +
[ Keep index Include untracked 189 195 /f-Parse-from-git-status documen-
198 196 //Ignore-octal -and treeGuid
stash all changes 191 197 J/-1-XY - subm- <mH> - <mI3- <mkd> - <hH>
[Ofl--235,7-+241,6-@f- private-static-IReadOnlylist<
Stash selected changes 235 241
Drop Selected Stash 236 242 UpdateItemStatus(y, false, subm,
237 243 }
Apply Selected Stash (jj‘R """"""" = 7 v

The stash is especially useful when pulling remote changes into a dirty working directory. If you want to store
information more permanently, you should create a branch.

11.1 Revision graph

You can create multiple stashes if needed. The 10 latest stashes are shown in the commit log with the text [stash],
all stashes if reflog is visible (see Maintenance).

stash@{0} WIP on release/4.0: 6084cf Update change log
index on release/4.0: 6034cf Update change log
untracked files on release/4.0: 6084cf Update change log

trmnfand-T| AnnVeuwnr hetter hinild decrrnintinn Remnue ©

e LU L LA e R

stash@{3} WIP on feature/i10423-conflicted-in-worktree-only: 3129f ficup! adding parsing test

- 1 (s

11.1. Revision graph 54



Git Extensions Documentation, Release 4.1

11.2 Left panel

Stashes are also available in the Left panel. Select the non-grey stash commits to select the commits in the revision
grid. To see stashes hidden in the revision grid, double click the stash.

Start  Repository  Mavigate View  Commands  GitHub |

% |_ v| - [ Chdevigcgitextensions 4\, = I rele

7 =] [ fenl]

f£9 Submodules |
- Branches
w .. Remotes

\ ) origin
. {-} upstream
: [ Inactive ]
Tags
v [ Stashes

----- @0} WIP on release/4.0: 6084cf Update change log

----- @{3}: WIP on feature/i10423-conflicted-in-worktree-only:

11.2. Left panel 55



cHAPTER 12

Modify Git history

A Git commit cannot be changed, the sha for the commit will be replaced at all changes. However, the contents of a
commit can be modified and committed again as a new commit with a new sha and the branch/tag can be moved to the
modified (new) commit.

* A commit can be reverted, the changes of a certain commit can be reverted and added as a new commit. Similar,
a commit can be applied again (possibly to a new branch), known as cherry picking.

e The commit can be added again (and all commits that are children to the commit) as new commits and git
branches can be made to point to the new commit instead.

There are 2 different cases, and consequently 2 ways to do it with git when we want to modify the history:
* Modify the last commit of the current branch with doing an amend
* Modify an older commit with doing an interactive rebase

Note: There are 2 things to understand when working with the history with git:

* As git only creates immutable commits (sealed by the shal), “modifying” a commit is in fact creating a new
more or less similar commit.

* Consequently, the entire history of children following the changed commit will be different.

So, except if the history has not been already pushed, or if you have good reasons, it is a bad practice to change the
history because you will mess the history of other developers.

12.1 Cherry pick commit

A commit can be recommitted by using the cherry pick function. This can be very useful when you want to make the
same change on multiple branches. Select the commit (or range of commits) you want to cheery pick:

56



Git Extensions Documentation, Release 4.1

® Comm

Filter files u
(17 Diff wit

fGitCu:umr

Working directory &

Commit index (V]

p featurefrefactor dummy commit 2
dummy commit

master  tmp/dummy3  upstream/master L
Merge branch 'release/4.0'

release/d.0  upstream)release/d.0 Update ch
Replace sync CommitMessageManager AP wit
Some recent repositories settings improvernent
Update translations at 95% and change log
Merge branch 'release/d.1" into release/4.0
Translate 'GitUl/Translatioen/English.xIf' in 'ja' (£
Translate 'GitUl/Translation/English.Plugins.xIf'
Avoid "git : warning: in the working copy of '=f
Bump versicn to 4.0.3

Merge branch 'release/4.1'

Decode url-encoded repository folder's name

Update fabricbot.json - Perform search tasks th

m“‘ Copy to clipboard ,1

H_' IC
|3, Checkout branch... v |
[,  Mergeinto current branch... 3 {C
4L Rebase current branch on 3
#. FReset current branch to here...

Create new branch here.. Ctrl+B
Rename branch... 3

Delete branch... 3

SEEEF

Reset another branch to here...

4 Create new tag here... Ctrl+T
“% Checkout this commit...
4 Revert this commit...
| & Cherry pick this commit...
& Archive this commit...
EE Advanced »
EZ  Compare 3
[ Mavigate k
12.1. Cherrgﬁ:piclgigﬁmmit , 57

O Open on GitHub

#  View build report in a browser



Git Extensions Documentation, Release 4.1

The confirm dialog opens:

Cherry pick commit >
¥ Cherry p
Cherry pick this commit:
3adla2labd Choose another
revision:
Review changes

=

Author Henk Westhuis
Commit date: 2 days ago (2018-12-13 1%:40:34)

Branchies): n'a

Tag(s): n/a

Automatically create a commit

[] Add commit reference to commit message Cherry pick

12.2 Revert commit

A commit cannot be deleted once it is published. If you need to undo the changes made in a commit, you need to
create a new commit that undoes the changes. This is called a revert commit. A revert commit is similar to a cherry
pick, but the cherry pick tries to apply the same changes as the original commit, a revert will try to reverse the changes.

12.2. Revert commit 58



Git Extensions Documentation, Release 4.1

Working directory &

Commit index ]

p featurefrefactor dummy commit 2

[ Copytoclipboard 3
master  tmp/dumm

W, Merge into current branch... 3
Merge branch ‘release

‘. Rebase current branch on [

e #. FReset current branch to here...

Repl C it by
Fplace sync -ommi Create new branch here... Ctrl+B :

LS
Some recent repositor #. FReset ancther branch to here... is

Update translations at 4 Create new tag here... ChrleT

M b h 'rel ;
Srgebranch Telease % Checkout this commit...

Translate 'GitUI/ Transl |i\

Revert this commit... |

= Py

The confirm dialog opens:

% Revert commit x
Revert this commit:
Jadla2labd
Review changes
Author: Henk Westhuis
Commit date: 2 days age (2018-12-13 19:40:34)
Branchies): n/a
Tag(z): n/a
] Automatically create a commit Revert this commit

12.3 Modify the last commit

The easiest way to modify the last commit is to do an amend commit. To do that, open the commit windows and
check the option “Amend commit”. If the commit message text area was empty, it is now filled with the message of
the last commit. You could now just update the commit message and commit or also add some more changes in the
staging area to add them to the commit.

12.3. Modify the last commit 59



Git Extensions Documentation, Release 4.1

& Commit = Cornmit message - = Commit terny

dummy commit 2
& Commit & push

Amend commit
[] Reset author

t-" Stash staged changes
]
]

12.4 Modify an older commit

It normally makes sense just to change the history for the current branch. To change the parents of the current branch
you will have to make a rebase. Git Extensions has functionality that wraps the Git rebase commands and simplifies
usage in some situations.

12.4.1 Interactive rebase

First, you should create a commit containing the changes you want to add to a previous commit (or know an existing
commit that contains this changes).

Then use the rebase feature in interactive mode on a base commit older than the one that you want to modify. See
Branches for how to start a rebase, start an interactive rebase from the context menu or by selecting the checkbox in
the rebase dialog.

X

Hide help Rebase current branch on top of another branch
Current branch:  feature/refactor

Rebase on |1bbcchOT%D(fbdm6b6E644?Saa1140d60.7d1f w

[] Interactive Rebase [ ] Preserve Merges Autosguash Auto stash [ Ignore date  [] Committer date is author date
current

[ Specificrange  From (exc.) To |feature/refactor

Commits to re-apply:

other Commit

Status  Action Subject Author Date
hash

P squere = green =
current branch new commit

sy POSHi for fles if
¥ merge conflicts oeour

12.4. Modify an older commit 60



Git Extensions Documentation, Release 4.1

You will be prompted by a text editor displaying all the commits that will be rebased

% F/dev/gc/gitextensions/.git/rebase-merge/git-rebase-todo — | X
1 bick 9d7a081f5 dummy change 1
2 pick 4feed7716 dummy change 2
E
4 # Rebase 3c2ac977b..4feed7716 onto 3c2acd77b (2 commands)
5 #
i # Commands:
7 # p, pick <commit> = use commit
2 # r, reword <commit> = use commit, but edit the commit message
o # e, edit <commit: = use commit, but stop for amending
1@ # s, squash <commit> = use commit, but meld into prewious commit
11 # T, fixup <commit> = like “squash”, but discard this commit's log message
12 # x, exec <command> = run command (the rest of the line) using shell
13 # b, break = stop here (continue rebase later with 'git rebase --continue')
14 # d, drop <commit> = remove commit
15 # 1, label <label: = label current HEAD with a name
15 # t, reset <label> = reset HEAD to a label
17 # m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]
13 # create a merge commit using the original merge commit's
19 # message (or the oneline, if no original merge commit was
e # specified). Use -c <commit> to reword the commit message.
21 #
22  # These lines can be re-ordered; they are executed from top to bottom.
23 #
24  # IT you remove a line here THAT COMMIT WILL BE LOST.
25 #
26  # However, if you remowve everything, the rebase will be aborted.
27 #
28  # Note that empty commits are commented out
29

You could have a look to Git documentation to better understand all the possibilities offered.
The options offered are :

¢ reorder the lines to reorder the commits,

* remove a line to throw away a commit and the changes introduced by the commit,

e write r or reword in front of a commit to rewrite the commit message,

e write f or fixup in front of a commit to meld the commit with the previous commit and with keeping the commit
message of the first commit,

* write s or squash in front of a commit to meld the commit with the previous commit and with rewriting the
commit message.

Often, we will use interactive rebase to move the line and squash or fixup commits to modify the history.

Once we did the changes, save and close the editor to let git do the rebase.

12.4.2 Using autosquash rebase feature

There is an option to facilitate the use of the interactive rebase when you know, at the moment of doing a
commit that the changes introduced by this commit should have been made in an older commit (the case of a fixup or

12.4. Modify an older commit 61


https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

Git Extensions Documentation, Release 4.1

squash).

In this case, you should create a commit containing the changes you want to add to a previous commit and use the
Advanced menu to:

e create a fixup commit
e create a squash commit
Right click on the commit in the history, you know that you want to “modify”.

And choose the suitable option. ..

Working directory
Commit index

D b feature/refactor dummy change 2 Gerhard Olsson 2018-12-15 1

Gerhard Olsson 2018-12-151

Copy to clipbeard

N ) nu.. - 3% Gerhard Olsson 2018-12-150
I, Merge inte current branch 3 A3
U Sl Rebase current branch on 5 ",} ~ Gerhard Olsson 2018-12-13 2
f “a Reset current branch to here 60,90 -= ... Gerhard Olsson 2018-12-10 2
S [ Create new branch B Henkowesthuis 2018-12-13 1
. MBS Compare s Bso.. = (B Russkie 2018-12-130
==
M 9 Create newtag B Henk westhuic 2018-12-12 2
V#
Ry _ Checkout revisi By -#.-ithc...n Henk Westhuis 2018-12-121
& 3 eckout revision
S| @ Revert commit fExa.., (= Henk Westhuis 2018-12-111
d ¢  Cheny pick commit bduct [ Drew Noakes 2018-12-12 1
= Archive revision -
EZ piff %8|ﬁ Advanced 3 | Edit commit
. .github E] Mavigate » Reword commit
e .r1.ugv.=_-t 15 View » | Create a fixup commit Ctrl+X
- B Creat h it
R reate a squash commi
. Build O Open on GitHub A
. External dat Get help on how to use these features
e supdate
| GitCom .

If you have not the changes prior to open the dialog, do them now.

GitExtensions will open the commit window with an already filled commit message containing the needed information
to find the commit to “modify”. Do not change the commit message and commit all the changes needed.

Then process to the interactive rebase, like describe in the previous paragraph but with enabling the option Autosquash.

12.4. Modify an older commit 62



Git Extensions Documentation, Release 4.1

3 Rebase — O X

Hide help Rebase current branch on top of another branch
Current branch:  feature/refactor

Rebase on |334403203debe3?865635468ff96539f1 v|

Rebase
[ Interactive Rebase [] Preserve Merges 1 Autosquash | Auto stash
| Specific range  From (exc.) To |feature/refactor b Solve conflicts
Commits to re-a| 3
- pely Add files
MName  Subject Author Date Status
Commit...
Continue rebase

Skip this commit

Abort
square = green =
current branch new commit

sitfis for files il
o ARA R&aroe conflicts oceur

Launch the rebase by clicking on Rebase.

The interactive rebase will process the same way but with a major difference! When enabling the Autosquash option,
git will automatically reorder the commits lines and write the good actions in front of the commits when it will open
the text editor. You normally have just to close the editor (except if you want to do additional changes). And let git do
the rebase.

12.4.3 Edit/reword commit

These options are the same as starting an interactive rebase on the parent to the selected commit and doing an edit
(allow to amend to the commit) or reword (editing the commit message) and then run an interactive rebase in the
background.

Note especially that this functionality will fail if you try to edit/reword a commit that is not a parent to the current
checkout.

12.4.4 Rebase onto

When you would like to rebase a branch, it could happen that you don’t want to rebase all the commits of the branch
that git will by default determine to rebase.

One possibility is to do an interactive rebase and when git open the editor to let you decide what actions you will do on
commits, you keep only the lines corresponding to the commit(s) you want to rebase (See interactive rebase to throw
away a commit!)

If that is the last commit(s) of the branch that you want to rebase, you could instead do a Rebase onto where you select
the range of commits to rebase by defining from which commit (not included!) you will start the rebase.

12.4. Modify an older commit 63



Git Extensions Documentation, Release 4.1

Start

'] | ;_7| “ v [ GitExtensionsDoc ¥ I gerhardol/feature/prepare-4.1 v| &F = & © commit

E2
-

Filter files using a regular expression...
(207 Diff with A 58f%e33: Rename side panel to
ﬂ make.cmd
4 Makefile
ﬁ readme.md
ﬁ source/branches.rst

sionsDec (gerhardol)

Repository  Mavigate View  Cemmands

ature/prepare-4.1) - Git Extensions d29880ca (rebase_from_revision_grid)

GitHub  Plugins  Tools  Help  Selution Runner

upstream/tmp/prepare-4.1 | linkcheck: https and permanent redirect

Describe 4.1 features
Documentation refresh Features in 4.0 or
Rename side panel to left panel Y
Markdown lint en readme
translation further removal

Waorking directory| @

}( Rebase

Rebase current branch on top of anather branch

Current branch:  gerhardol/feature/prepare-4.1

Rebase on |dc1bc?.T30&22fed?99bdc?95f22fe£98bfbbabe5 v|

() Interactive Rebase [_] Preserve Merges Autosquash [ Autostash ) Ignore date [C) Committer date is author date

Commit index ]

|» gerhardol/feature/prepare-4.1| @

@ Specificrange  From (exc.) 58f9feS3 S |gerhardo\ffeaturefprepare--‘l.] v|

Documentation refresh Features in 4.0 or
Rename side panel to left panel ‘
m Remove translations
Updated translations from Transifex Mat
Updated source files Transifex api v3

Update documentation for new checkbo:

Diff %% Filetree /7 GPG M Cur{

Commits to re-apply:

@(ﬁ) '| ] & ~ T"f/ + [ | All branches = Branches:

Commit

Status  Action hash

Subject Author Date

To select the base commit from which the range selection will be made, you have to options in Git Extensions:

L0 or

[T
L0 or

Matg

s

ckboy

Con!

elto

* You can use the commit selection popup-up:

}{ Rebase

] Rebase current branch on top of ancther branch

Current branch:  gerhardol/feature/prepare-4.1

Rebase on | dc1bc2130e22fed799bdc795f22feB98bfbbabes |

[ Interactive Rebase [ Preserve Merges

@ Specificrange  From (exc)

x Choese Commit

To | gerhardol/feature/prepare-4.1 - |

|) gerhardol/feature/prepare-4.1 | |gerhardol,.ffeaturefprepare-d.'l | |upstreamg’feature}‘prepare-d.'l | Describe 4.1 _.Gf4e42f
-

Documentation refresh Features in 4.0 or earlier not described or d ption tuned.

Rename side panel to left panel

upstreamn/main | Remove translations

Updated translations from Transifex Matching old source files

Updated source files Transifex api v3

Update documentation for new checkbox 'Reset Author' (#138)

upstrearmn/latest | Add base documentation for advanced merge options (#144) - this is to support fixing https:...

Find specific commit:

upstream/release/4.0| bump version (#143)

IUpdate documentation for 4.0 (£140)

Parent(s): 58f3fe53

Autosquash ] Auto stash [ Ignore date ) Committer date is author date

= O X

=
.SS'FQ'FES
.EZQd?SB
o .GCQBSEJE
o .4?1b19b
d595@d4
o 9&91’?2?

.9?91951"
o n 1918l1al

* Or you could do it by selecting two commits from the revision grid. The first one selected will fill the from field.

12.4. Modify an older commit

64



Git Extensions Documentation, Release 4.1

The second will be the target commit when the branch will be rebased onto:

}{ GitExtensionsDoc (gerhardol/feature/prepare-4.1) - Git Extensions d29880ca (rebase_from_revision_grid)
Start  Repository  Mavigate View Commands  GitHub  Plugins  Tools  Help  Selution Runner

[ ||_,_| . v{E-GitExtensionsDoc * I» gerhardol/feature/prepare-4.1 v|Q = ¢ ) Commit (3) @(ﬁ] v| &% ~ 8 ﬁ’;vm i

m upstream/tmp,prepare-4.1

[ Copyto clipboard 3

Describe 4.1 features

. . & Checkout branch... 3
Documentation refresh Features in 4.0 of | )

W, Merge into current branch... 3

Renarme side panel to left panel |é [fiee @ e e 5 Selected commit
Markdown lint on readme . Reset current branch to here... Selected commit interactively...
translation further removal [l Create new branch here...  Ctrl+B Selected commit with advanced options...
Working directory | 2”1 & 2 Iy Delete branch.., »
Commit index (7] . Reset another branch to here...

|» gerhardol/feature/prepare-4.1 | E Create new tag here... Crl+T :/prepare-4.1 | Describe 4.1 features

Documentation refresh Features in 4.0 o Checkout this commit...

Cherry pick this commit...

Rename side panel to left panel

upstream/main | Remove translations

He 6@ o

Archive this commit...

Warning: When doing a rebase onto, the from commit defining the range of commit(s) that will be rebased must be an
ancestor of the current branch checked out that will be rebased.

12.5 Merge Conflicts

When merging or rebasing branches or commits you can get conflicts. Git will try to resolve these, but some conflicts
need to be resolved manually. Git Extensions will show warnings when there is a merge conflict in the status bar in
the bottom right corner.

Plugins  Tools Help
r I tmp/aa-rebase v|@ * @ = Commit(3) 7 v| ES-8 T ”

05d (N

Y]

91

o
oo

rena... . Gerhard Olsson 24 days ago :
= S -

12.5.1 Handle merge conflicts

To solve merge conflicts just click on a warning or open the Solve merge conflicts... dialog from the
Commands menu. A dialog will prompt showing all conflicts.

12.5. Merge Conflicts 65



Git Extensions Documentation, Release 4.1

W Resolve merge conflicts — O et

Unresolved merge conflicts | e |

Filename

| Start mergetool |

| Rescan merge conflicts |

A file with the same name has been created locally (ours) |§1
© and remotely (theirs). Choose the file you want to keep
or merge the files.

Merge | | Beset |

Local az
Baze no base

Remote a2

i0 Help

The context menu shows the actions to resolve the conflicts. Double-click on a filename will start the mergetool.

% Resolve merge conflicts — O x
Unresoclved merge conflicts | Tt e |
Filename
| Start mergetool |

Open in pdmerge
| Rescan merge conflicts |

Open in mergetool

A file with the san
o and remotely (the
or merge the files

Mark conflict as solved Merge | | Reset |

Choose local (ours) Ctrl+1

Choose remote (theirs) Ctrl+2

roca > Choose base Ctrl+3
Basze no base
Rermote a2 Open local with
Open remote with
01 Help

Open base with

Save local as
Save remote as

Save base as

Open
Open With

1 Show in folder

File history

There are three kinds of conflicts:

12.5. Merge Conflicts 66



Git Extensions Documentation, Release 4.1

Use modified or deleted file?
Use created or deleted file?
Start merge tool.

File deleted and changed
File deleted and created
File changed both locally and remotely

If the file is deleted in one commit and changed in another commit, a dialog will ask to keep the modified file or delete
the file. When there is a conflicting change the merge tool will be started. You can configure the tool you want to use
for merge conflicts. The image below shows Perforce PAMerge, a merge tool free to use for small teams.

In the merge tool you will see four versions of the same file:

Base The latest version of the file that exist in both repositories
Local The latest local version of the file

Remote | The latest remote version of the file

Merged | The result of the merge

Caution: When you are in the middle of a merge the file named local represents your file. When you are in the
middle of a rebase the file named remote represents your file. This can be confusing, so double check if you are in

doubt.

(@ SshskPass.rc2 - Perforce PAMerge
File Edit View Search Help

S B Y » @« 08

3 diffs (1gnore Ine ending differences) | Tabspacng: 4 | File format (Encoding: System Line endings: Windows )

Base: SshAskPass BASE_2604.rc2
Left: SshAskPass LOCAL_2604.rc2

@ Right: SshAskPass REMOTE_2604.rc2

4@ Merge: SshaskPass.rc2

@ [GitExtSchiskPass/SshAskPass LOCAL_2504.1c2
9 ///////////////////////////////////////////////////////

10| // Add manually edited resources her:
11 ///////////////////////////////////////////////////////

13 // Version
14/
15 VS VERSION INFO VERSIONINFO

Differences from base: 2
Differences from base: 0
Conflicts: 1

JGitExiSshAskPass/SshAskPass_BASE_2604.rc2
///////////////////////////////////////////////////////
// Bdd manually edited resources her

///////////////////////////////////////////////////////

// Version
I
V5 VERSION INFO VERSIGNINFO

JGtExtSshAskPass/SshAskPass REMOTE_2604.rc2
///////////////////////////////////////////////////////

// Add manually edited resources hex
///////////////////////////////////////////////////////

// Version
I
VS VERSION INFG VERSIGNINFO

16 FILEVERSION 3,01,00,0 16| FILEVERSION 3,00,00,2433 16 FILEVERSION-dummy-changeZ 3,00, 00,2233
17 PRODUCTVERSION 3,01,00,8 17| PRODUCTVERSION 3,00,00,4433 17 PRODUCTVERSION 3,00,00,4433

18] FILEFLAGSMASK Ox3fL 18| FILEFLAGSMASK Ox3fL 18| FILEFLAGSMASK Ox3fL

10 #ifdef _DEBUG 10|#ifdef _DEBUG 19 #ifdef _DEBUG

20 FILEFLAGS Ox1L
21 #else

22 FILEFLAGS OxOL 22| FILEFLAGS 0xOL 22 FILEFLAGS OxOL
23 #endaf 23 #endif 23 #endif

24 FILEOS Ox4L 24| FILEOS 0x4L 24 FILECS Ox4L

25 FILETYPE Ox2L 25| FILETYPE 0x2L 25 FILETYPE Ox2L

@ sshaskPass.rc2

FILEFLAGS Ox1L
#else

THELELTEELSATEIT LTI S ELTEESE AT IS LTI LTI AT EESF LTI L AT L EATEA AT

// mdd manually edited resources here.

/////////////////////////////////////////////////////////////////////////////

/r

// Version

/rf

VS VERSION INFO VERSIONINFO

FILEFLAGS 0x1L
#else

FILEVERSION 3,00, 00,4433
PRODUCTVERSION 3,00, 00, 2433
FILEVERSION 3,01,00,0

PRODUCTVERSION 3,01,00,0
FILEVERSION-dummy-change2 3,00, 00,4433
PRODUCTVERSION 3,00,00,3433

FILEFLAGSMASK Ox3fL
#ifdef DEBUG
FILEFLAGS OxlL
#else

FILEFLAGS OxOL
#endif

FILEOS Ox4L
FILETYEE 0x2L
FTTFSTRTYPF aval.

12.5. Merge Conflicts

67



cHAPTER 13

Patches

Every commit contains a change-set, a commit date, the committer name, the commit message and a cryptograph
SHAT1 hash. Local commits can be published by pushing it to a remote repository. To be able to push you need to have
sufficient rights and you need to have access to the remote repository. When you cannot push directly you can create
patches. Patches can be e-mailed to someone with access to the repository. Each patch contains an entire commit

including the commit message and the SHAT.

:'I.IFrorr. E8c02ec4701c84c6T71la41elebds0c5822859851f Mon Sep 17 00:00:00 2001
2 From: Russell King <rmkfdyn-67.arm.linux.org.uk>
3 Date: Sun, 17 Apr 2005 15:40:46 40100

4 Subject: [PATCH 000213/123824] [PATCH] ARM: h3600_irda set speed arguments

5
6 h3600_irda set_speed() had the wrong type for the "speed" argument.
T Fix this.

8

9 Signed-off-by: Russell Hing <rmkfarm.linux.org.uk>
10 ——-

11 archfarm/mach-=a21100,/h3600.c | 2 +-

12 1 files changed, 1 insertions(+), 1 deletions(-)
13

14 diff --git afarch/arm/mach-=2al1100,/h3600.c bfarch/arm/mach-sal1100/h3600.

15 index 9788d3a..84cB654 100644
16 -—- afarch/farm/mach-=sall100/h3600.c
17 +++ bfarch/farm/mach-=sal1100/h3600.c

18 @@ -130,7 +130,7 @8 static int h3600 irda set power(struct device *dev, unsigned int state)

19 return 0;

20 }

21

22

25 +static void h3600_irda set_ speed(3truct device *dev, unsigned int speed)
24 {

25 if (=peed « 4000000) {

26 clr h3600 egpio (IPAQ EGPIC IR FSEL):

27

281.6.1.9.g97c34

68



Git Extensions Documentation, Release 4.1

13.1 Create patch

Format a single patch or patch series using the format patch dialog. You need to select the newest commit first and then
select the oldest commit using ctrl-click. You can also select an interrupted patch series, but this is not recommended
because the files will not be numbered.

M Format patch >
(®) Save patches in directory |F:\temp Browse
() Mail patches from gerhardol@users.noreply.github.com
To
Subject
Body
b feature/refactor dummy commit 2 Gerhard Olsson 1 hour age eB2659d ~
T dummy commit Gerhard Olsson 1 hour age 32chb0&2
tmp/go9-7 AppVeyor: better build description Remove skipped dis... === 6 Philippe Migssec 13 days ago 79£9e29
Cl: more meaningful icon instead of displaying a circle g Philippe Miossec 13 days age 9850c51
(I hope) more pleasant default colors 6 Philippe Miossec 14 days ago 321ceds
Same tooltip for Date, Author and Avatar column 6 Philippe Miossec 18 days ago
EditMNet5Spell: Close the completion when pressing some special char... [« 6 Philippe Miossec 8 months ago
& fixup! Form Rebase: Add rebase dependent branches “--update-refs’ r... i Gerhard Olsson 10 days ago
Form Rebase: Add rebase dependent branches “--update-refs” rebas... (== g Philippe Miossec 7 months ago
Settings: refactor getting true/false settings 6 Philippe Miossec 7 months ago

Current branch: feature/refactor
Create patch(es)

When the patches are created successfully the following dialog will appear.

Patch result >

F:/temp/0001-branches. patch

13.2 Apply patches

It is possible to apply a single patch file or all patches in a directory. When there are merge conflicts applying the patch
you need to resolve them before you can continue. Git Extensions will help you applying all patches by marking the
next recommended step.

Use ‘Sign-Off” checkbox to sign off commits of applying patch. Git Extensions will remember your choice.

13.1. Create patch 69



Git Extensions Documentation, Release 4.1

(® Patch file
() Patch directory

}{ Apply patch (Chdevigcgitextensions_44)

Fiitemph 0007 -status-monitor-trmp.patch

Browse

Browse

|Status Mame  Subject

Author

Date

— O

bt

| Apply patch

lgnore Wh.spe,
Sign-Off

I Solve conflicts I

| Add files

I Conflicts resolved I

 Skip patch

| Abort patch

13.2. Apply patches

70



cHAPTER 14

Notes

Notes can be added to a commit. Notes will be stored separately and will not be pushed. To add a new note choose

add notes in the context menu of the commit information box.

& Commit EZ piff T Filetree J” GPG @M Conscle @) Build Report

Author: RussKie <RussKie@users.noreply.github.com>
Date: 14 hours ago (2018-12-13 08:10:44)
Committer: GitHub < noreply@github.com:>

Commit hash: al77c46a2f0eTad2481d21e2f5638d9d610e1b95
Children: 93cOcicaid caledas8fl

Parents: dd0bebe3cd 2ab6511£725

Merge pull request #5878 from drewnoakes/fix-5859-blocking-avatar-download

Avoid blocking UI wia WebClient.OpenReadTaskAsync

Related links: View on GitHub, PR 5878
Contained in branches: feature/version-update

Contained in no tag Cepy commit info

Derives from tag: ¥3.00.00-rcd + 45 commits Show local branches containing this commit

Show remote branches containing this commit

Show tags containing this commit
Show messages of annotated tags

Show remote branches only when no local branch contains this commit

Show the most recent tag this commit derives from

| Add notes

Ctrl+Skift+N |

The editor that has been configured in the settings dialog will be used to enter or edit the notes. The Git Extensions

editor is advised.

71



Git Extensions Documentation, Release 4.1

3 F/dev/gc/gitextensions/.git/worktrees/gitextensions_4/NOTES_EDITMSG

H oK

Write/edit the notes for the following object:

commit al77c46a2fBe7ad42481d21e2f5638d9d618e1bI5
gpE: Signature made Thu Dec 13 @8:18:44 2813

EPE: using RSA key 4AEE1BF33AFDEB23
gpg: Can't check signature: No public key

Merge: dd@bebc3c 23651172

Author: RussKie <RussKiefusers.noreply.github.com>
Date: Thu Dec 13 18:1@:44 2813 +11@@

Merge pull request #5878 from drewncakes/fix-5859-blocking-avatar-download

Avoid blocking UT wvia WebClient.OpenReadTaskAsync
GitUI/Avatars/AvatarDownloader.cs | 19
GitUI/UserControls/AvatarControl.cs | 2 ++

Plugins/Gource/GourceStart.cs | 3 +++
# 3 files changed, 24 insertions(+)

HoH oK oK oK H oK oK H W K K W K W

72



cHAPTER 15

File history

File history isaseparate form to view the history of a file or folder. Since Git Extensions 4.0 this functionality is
included in Browse Repository but can be activated by Show file history in the main window. This form is deprecated

and may be removed in future releases.

To display the single file history, right click on a file name in File tree or Diff tab and select File history or

Blame.

The single file history viewer shows all revisions of a single file or submodules.

B Commit

EZ piff &

Diff with: _go/latest @f9%e

»

> sourcpicettinac ret

File tree

4~ GPG

o & iV

® L

& L

e 1=

~

Open with difftool

Save selected as...

Reszet file(s) to

Ctrl+5

Cherry pick file's changes

Edit file
Delete file

Copy full path(s)
Show in folder

Show in File tree

File history
Blame

Find

F4
Del

Ctrl+C

Ctrl+F

73



Git Extensions Documentation, Release 4.1

15.1 Commit

The Commit tab contains the information about the commit, including the other files in the commit.

3¢ File History - GitUl/CommandsDialogs/FormBrowse.cs - F\dev\gc\gitextensions_4
Branches: » = | Filter V- ¢ 8- 8-
Add RefreshTree
Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, etc.) registers for callbacks and handles its own update, instead of being told to reload

Issue 5616: Provide a way to remove all invalid recent repositories.

2

Merge pull request #5641 from NikolayXHD/fix_commit_info_scroll

Force commit info to clear on module change

& Commit EZ piff View 4 Blame
Author: RussKie <RussKie@users.noreply.github.com>
Date: 1 month age (2018-10-31 06:54:11)
Committer: GitHub <noreply@agithub.com>
Commit hash: 66380983451680c816d9abcd6797c3Ted2307449
Parents: Oe3ddbd35f e538ea30b8

Merge pull request #5641 from NikolayXHD/fix_commit_info_scroll

Fix commitInfo scroll on mouse wheel
Notes:

Related links: View on GitHub, PR 5641
Contained in branches: vhjay/_AboutlLayout, tmp/master, spdr870/_feature/gitcmdmissing, spdr870/_feature/3853, spdr870/_feature/3782, spdrB70/_feature/3678, russkie/_fix_3644_undc

diff --git a/GitUI/Com

Diff with: De3ddbd3 -
/7 GitUl/CommandsDizlogs/FormBrowse.Designer.cs 1ndex;;?33';i;ea, . ?:gsi_‘
; ; -—- a/Gi ommandsDi
.+ GitUlfCommandsDialogs/FormBrowse.cs b/GitUT/CommandsDi

/7 GitUl/Commitinfo/Commitinfo.Designer.cs

@@ -1214,11 +1214,6 (@

7 GitUl/Commitinfo/Commitinfe.cs

/" GitUl/Commitinfo/ CommitinfoHeader.Designer.cs var child

/7 GitUl/Commitinfo/ CommitinfoHeader.cs '?EVlSlOf.TI

" Gitll/MouseWheelRedirector.cs - ;'f (Revis

Diff with: e358ea30 A g _ paren

" github/ISSUE_TEMPLATE.md 2 = paren
o _ }

& Externals/NBug (+1)
/" GitCommands/GitCommands.csproj

""GltExtUtlIE_-'BlnarySearch.cs private async
o GitExtUtils/ GitExtUtils.csproj

}

15.2 Diff

You can view the difference report from the commit in the Dif £ tab.

15.1. Commit 74



Git Extensions Documentation, Release 4.1

}-{ File History - GitUl/CemmandsDialogs/FormBrowse.cs - Fh\devigchgitextensi
Branches: = | = | Filter: T -
Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, et

Issue 3616 Provide a way to remove all invalid recent repositories,

¢

Merge pull request #5641 from MikelayXHD/fi_commit_info_scroll

Force commit info to clear on module change

| PRSP SNy RPN | [P PRy O [

® Commit ES Diff View 4 Blame
diff --git a/GitUI/CommandsDialogs/FormBrowse.cs b/
index 7386feced..759d88737 1leacdd
--- a/GitUI/CommandsDialogs/FormBrowse.cs
++ b/GitUI/CommandsDialogs/FormBrowse.cs
@ -1214,11 +1214,6 @@ private woid FillCommitInfo(

var children = RevisionGrid.GetRevisio
RevisionInfo.SetRevisionkWithChildren(r

1217 = if (RewvisiconInfo.Parent is Panel paren
1218 - {
1219 - parent.AutoScroll = true;
1228 = parent.AutoScrollMinSize = Revisio
1221 - }

¥

private async Task FillapgInfohsynci)

Note: Added lines are marked with a +, removed lines are marked with a —.

15.3 View

You can view the content of the file in after each commit in the View tab.

15.3. View 75



Git Extensions Documentation, Release 4.1

}-{ File History - GitUl/CemmandsDialogs/FormBrowse.cs - Fh\devigchgitextens
Branches: - ? - | Filter: ? 1

Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remnotes, ¢

Issue 3616 Provide a way to remove all invalid recent repositories,

Merge pull request #5841 from MNikelayXHD/fi

_commit_info_scroll

¢

Force commit info to clear on module change

| PRSP SNy RPN | [P PRy O [

using System;

using System.Collections.Generic;
using System.ComponentModel;
System.Diagnostics;

using System.Drawing;

[y I ) IR SR WV % I
c
4]
o8
=]
g

using System.Drawing.Drawing2D;
using System.IO;
using System.Lling;

[ |

15.4 Blame

There is a blame function in the file history browser. The commit for the selected line is displayed.

3¢ File History - GitUl/CommandsDialogs/FormBrowse.cs - FAdevigc\gitextensions_4
Branches: - 5 - | Filter: A BL RIS E o

Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, etc.) registers for callbacks and handles its own update, instead of being told to reload

Issue 5616: Provide a way to remove all invalid recent repositories.

KX

Merge pull request #5641 from NikolayXH commit_info_scroll

Force commit info to clear on module change

® commit E2 Diff View # Blame

Author Henk Westhuis <henk westhuis@hotmail.com>
Date: 10 years ago (2008-11-27 20:17:44)

Commit hash:  bfcbc832fd%aad0of67fedaTf3452a1673% elfe
Parent: abadeabd06

added files

Notes:

Tala52 - 2812-86-15 ©8:83:18 - GitUI/FormBrowse.cs

1 using System;
Henk Westhuis - 2088-11-27 20:17:44 - GitUI/Browse.cs 2 using System.Collections.Generic;
Drew Moakes - 2818-86-19 11:37:16 - GitUL/CommandsDialogs/FormBrowse.cs 3 i
Steffen Forkmann - 2018-87-28 16:44:38 - GitUI/FormBrowse.cs 4 Author: Henk Westhuis
Arkadiy Shapkin - 2811-1@-28 81:53:22 - GitUI/FormBrowse.cs 5 23:%;’;’:?:;%;;;%;;2”?"“"
Drew Noakes - 2@18-87-19 16:22:56 - GitUL/CommandsDialogs/FormBrowse.cs g CommitterTime: 2008-11-27 20:17:44
Steffen Forkmann - 2818-87-28 16:44:38 - GitUI/FormBrowse.cs 7 Summane: added files

Double clicking on a code line shows the full commit introducing the change.

15.4. Blame 76



cHAPTER 16

Maintenance

In this chapter some of the functions to maintain a repository are discussed.

16.1 Compress Git database

Git will create a lot of files. You can run the Compress git database to pack all small files building up a
repository into one big file. Git will also garbage collect all unused objects that are older then 15 days. When a
database is fragmented into a many small files compressing the database can increase performance.

77



Git Extensions Documentation, Release 4.1

% gitextensions_4 (feature/version-update) - Git Extensions

Start | Repository | Mavigate View Commands  GitHub  Plugins  Tools H
Ly | (| ‘i Refresh F3 » feature/version-update v| iF -
| File Explorer Ctrl+Skift+0
Search b directory a1 Ban
= Remote repositories...
B Bra| = it index
v - Submodules...

Worktrees

< Edit .gitignore

..... Edit .git/info/exclude
----- Edit .gitattributes

""" Edit .rnailmap
""" Edit .gitreview

Sparse Working Copy

Update all submodules

Synchronize all submodules

refversion-update  [» Ogerhardol/f
/feature/lockfreelist Review changes
sions/master  Merge pull request 23§
ptimalizations

EynchronizedCollection with cheaper
/feature/trygetenacthpath  Delete Tn
gkes/code-of-conduct . Add code of
akes,/fix-3859-blocking-avatar-downl

akes/master Merge pull request #58¢

@ Git maintenance

|

i2: Repository settings

----- %5 Close(go to Dashboa

rd)  Ctri+W

[ E Compress git database

3

----- TR SYeTETERh |

o IR2ARA_thrnttlc

16.2 Recover lost objects

M Recover lost objects...

= Delete indexlock

=}

w»  Edit.git/config

Normally Git will not delete files right away when you remove something from your repository. The reason for this is
that you can restore deleted items if you need to. Git will delete removed items when they are older then 15 days and
yourun Compress git database.

Commits without branches or tags can be shown with Git reflog. The easiest way to view the commits is to show

Reflog.

% gitextensions_4 (feature/version-update) - Git Extensions

Start  Repository  Mavigate | View | Commands GitHub  Plugins  Tools  Help
B | ==L | £y~ F:‘-Ldf_ﬂ Show all branches Ctrl+Skift+ 4
Show current branch cnly Ctrl+Skift+ L
searchs | Show filtered branches Ctrl+Skift+T
-~ Branches (112) i
. i feature ¥ | Show remote branches Ctrl+5kift+R
I W version-upd; ¥ | Show reflog references
L Be 3.00-version m—

The reflog commits are listed as gray:

16.2. Recover lost objects

78


https://git-scm.com/docs/git-reflog

Git Extensions Documentation, Release 4.1

}{ gitextensions_4 (master] - Git Extensions
Start  Repository  Mavigate  View  Commands  GitHub  Plu
iy | HEE | [9 ~ Fudev\gcigitextensions_4 ~ master - | Q
Working directory o1 B
Commit index

b master J[> gitextensions/master USRI BPELS AN

feature/version-update | Ogerhardol/feature/version-updat

( Update build version 2.99.90 -> 3.01.00.a0 Y

T s O

Update build version 2.99.90 -» 3.01.00.a0

spdrd70/feature/lockfreelist Review changes

GE also supports the previous way to show you all dangling objects and will allow you to review and recover them. If
you accidentally deleted a commit you can try to recover it using the Recover lost objects function.

}{ gitextensions_4 (master) - Git Extensions
Start | Repositery | Mavigate View Commands  GitHub  Plugins  Tools  Hel

@ | q "y Refresh F3 ~ master "|Q - & @ Commit
|| File Explorer Ctrl+Skift+ 0

. Remote repositories...

Submodules...
I. date build version 3.00.00 -> 3.01.00.
Update all submodules

Synchronize all submedules lurea’versinn-update Update build vers

Worltrees 3

= Edit .gitignore

Edit .git/info/exclude [10E5

Edit .gitattributes 2c/fin- 3859-blocking-avatar-download
Edit .mailmap

Edit .gitreview

B per array without locking

5 Working C
parse frorng L-opy TryGetExactPath, to remove performal

|a/ it maintenance k | % Compress git database
i2 Repository settings | M  Recover lost objects... i
i€
¥% Close (go to Dashboard)  Ctrl+W f= Delete indexlock
\ - ’ iy Edit.git/config
nitextensinns/release/300 Fivec SN R-ATHEr AAMEE FHTTET

16.2. Recover lost objects 79



Git Extensions Documentation, Release 4.1

x Verify database

dangling objects”

Double-click on a row for quick view

By default enly unreferenced objects that are older than
2 weeks are removed when cleaning up the database. All
other object are only deleted when you run "Remove all

Check commits you want to recover and press Recover button
Context menu for additional operations

Show commits and tags [ ] Show other objects

Do not consider commits that are referenced only by an entry in a
y by y

reflog to be reachable,

O Print out chjects that exist but that aren't readable from any of the reference

nedes,

m Check not just ehjects in GIT_OBJECT_DIRECTORY (SGIT_DIR/objects),
but also the ones found in alternate object pools.

Date Type

[1|2018-12-13 21:49 dangling commit

Author

Gerhard Olssen

Hash

661b2fbTe5f2f93cfB8354a11240dfb287a5ae1b

Parent(s) hashs 2

al77cd6a2fle7ad2481d21e2f5638d9

[1/2018-12-11 16:27 | dangling commit

Henk Westhuis

6b283c5999b302e56c05c3dbc88255da588e18df

022e8e1643316e535b9de32bhiabZed.

) 2018-12-11 00:09 dangling commit

Gerhard Olssen

47377Tb365317afbbfad07adc19a3f134f0b23fba

034fc2528acld1e18bed7odafe7d117

>

Remaove all dangling cbjects

Delete all LOST_AMND_FOUND tags

Recover selected objects I

Save objects to .git/lost-found

Cancel

Git Extensions also is able to tag all lost objects. Doing this will make all lost objects visible again making it very
easy to locate the commit(s) you would like to recover.

16.3 Fix user names

When someone accidentally committed using a wrong username this can be fixed using the Edit .mailmap func-

tion. Git will use the username for an email address when it is set in the

x Edit .mailmap

Proper Name <Proper Name <properfjemail.xx> Commit Name <commit@email.sx> : .
P P proper @ Edit the mailmap.

This file is meant to correct usernames.

Example:

Henk Westhuis <Henk@.(none)>
Henk Westhuis =henk_westhuis@hotmail.com>

For more information run
command "git help shortlog”

For more information, see https://git-scm.com/docs/git-check-mailmap.

.mailmap file.

Save

16.3. Fix user names

80


https://git-scm.com/docs/git-check-mailmap

Git Extensions Documentation, Release 4.1

16.4 Ignore files

Git will track all files that are in the working directory. Normally you do not want to exclude all files that are created
by the compiler. You can add files that should be ignored to the .gitignore file. You can use wildcards and regular
expressions. All entries are case sensitive. The button Add default ignores will add files that should be ignored
when using Visual Studio.

3 Edit.gitignore — O >
build *.suo®.bak*.cache®.ilk*.log i */*.sbrobj/[Rr]lelease*/_ReSharper”
*.orig
tx.exe

GitExtensions.settings.backup
source/locale/.doctrees/
/source/__pycache_ /
/source/extensions/_ pycache_ /

*.pyc
Add default ignores Add pattern Example ignore patterns  Generate a custom ignore file for git
Cancel | Save
A short overview of the syntax:
# Lines started with # are handled as comments
! Lines started with ! are exclude patterns
[Dd]| Characters inside [ . . ] means that 1 of the characters must match
Wildcard
/ A leading slash matches the beginning of the pathname; for example, /* . ¢ matches cat—file. c but not
mozilla-shal/shal.c
/ If the pattern ends with a slash, it is removed for the purpose of the following description, but it would only
find a match with a directory. In other words, foo/ will match a directory foo and paths underneath it, but
will not match a regular file or a symbolic link foo (this is consistent with the way how pathspec works in
general in git).

For more detailed information.

16.4. Ignore files 81


https://git-scm.com/docs/gitignore

cHAPTER 17

Settings

The settings dialog can be invoked at any time by selecting Settings from the Tools menu option.

17.1 Git Extensions

The top level page has a checklist for settings in Git and Git Extensions.

82



Git Extensions Documentation, Release 4.1

¥

|T;.'petc find Settings source: (® Global for all repositories

~ -3 Git Extensions ~
----- %% General
» ‘%% Appearance
-z Sorting
) Colors
-Aa Fonts

@ Console style A username and an email address are configured.
..... ¥ Revision links

7 Build server integratic There is a mergetool configured: pdmerge

----- B Scripts
..... 3] Hotkeys

----- M Shell extension

The checklist below validates the basic settings needed for Git Extensions to work properly.

Git 2.40.1.windows.1 is found on your computer.

There is a difftool configured: tortoisediff

Shell extensions registered properly.
w1 Advanced

[ 4" Confirmations Linux tools (sh) found on your computer.
Detailed
.. 2 Browse repository

w
Git Extensions is properly registered.

Commit dialog
=Z Diff viewer

- 4 Blame viewer The configured language is English.
..... 4~ SSH

Default 55H client, OpenS5H, will be used. (commandline window will appear on pull, push and clone operations)

[] Check settings at startup (disables automatically if all settings are correct)
Save and rescan

1 Advanced

v b Plugins

4t Auto compile subma
..... O Bitbucket Server

..... # Delete obsolete brant

..... % Find large files

Gerrit Code Review

) GitHub

-4 Periodic background

..... 7 Plugin Manager
< >

v

Changes on the selected page will be saved instantly. oK

Therefore the Cancel button does NOT revert any changes made. Cancel Apply

The following buttons are always available on any page of the Settings dialog. Sometimes the Cancel button has no
effect for the page - this will be noted on the page in the area next to the buttons.

Button Description

OK Save any entered changes made in any settings page and close the Settings dialog.
Cancel Any entered changes in any settings page are not saved. The Settings dialog is closed.
Apply Any entered changes in any settings page are saved.

Settings that are specific to Git Extensions and apply globally will be stored in a file called GitExtensions.
settings either in the user’s application data path or with the program. The location is dependent on the Is-
Portable setting in the GitExtensions.exe.config file that is with the program. Settings that are specific to
Git Extensions but apply to only the current repository will be stored in a file of the same name, GitExtensions.
settings, but in either the root folder of the repository or the . git folder of the repository, depending on whether
or not they are distributed with that repository.

This page is a visual overview of the minimal settings that Git Extensions requires to work properly. Any items
highlighted in red should be configured by clicking on the highlighted item.

This page contains the following settings and buttons.

Check settings at startup
Forces Git Extensions to re-check the minimal set of required settings the next time Git Extensions is started. If
all settings are ‘green’ this will be automatically unchecked.

17.1. Git Extensions 83



Git Extensions Documentation, Release 4.1

Save and rescan
Saves any setting changes made and re-checks the settings to see if the minimal requirements are now met.

17.1.1 General

This page contains general settings for Git Extensions.

Performance

Show number of changed files on commit button
When enabled, the number of pending commits are shown on the toolbar as a figure in parentheses on the
Commit button. Git Extensions must be stopped and restarted to activate changes to this option. Turn this
(and next) off if you experience slowdowns.

Show number of changed files for artificial commits
If artificial commits are enabled in the revision graph, show the pending commits as well as a tool tip with
a summary of changes.

Show submodule status in browse window
Show the status for submodules (as well as supermodules) in the dropdown menu in Browse. The status
is updated if Show number of changed files for artificial commits is enabled and the number of artificial
commits is updated. (Changes in supermodules are not monitored).

Show stash count on status bar in browse window
When you use the stash a lot, it can be useful to show the number of stashed items on the toolbar. This
option is turned off by default.

Show ahead and behind information on status bar in browse window
If the current local checkout branch is tracking a remote branch, show the number of commits the branch
is ahead (changed locally) and behind (changed on the remote) on the status bar in Main toolbar and for
branches on the Left panel.

Check for uncommitted changes in checkout branch dialog
Git Extensions will not allow you to checkout a branch if you have uncommitted changes on the current
branch. If you select this option, Git Extensions will display a dialog where you can decide what to do
with uncommitted changes before swapping branches.

Limit number of commits that will be loaded at start-up
This number specifies the maximum number of commits that Git Extensions will load when it is started.
These commits are shown in the Revision Graph window. To see more commits, then this setting will need
to be adjusted and Git Extensions restarted.

Behaviour

Close Process dialog when process succeeds
When a process is finished, close the process dialog automatically. Leave this option off if you want to see
the result of processes. When a process has failed, the dialog will automatically remain open.

Show console window when executing git process
Git Extensions uses command line tools to access the git repository. In some environments it might be
useful to see the command line dialog when a process is executed. An option on the command line dialog
window displayed allows this setting to be turned off.

Use histogram diff algorithm
Use the Git ‘histogram diff” algorithm instead of the default. This algorithm is useful in situations where
two files have diverged significantly and the default algorithm may become ‘misaligned’, resulting in a
totally unusable conflict file.

17.1. Git Extensions 84



Git Extensions Documentation, Release 4.1

Include untracked files in autostash
If checked, when a stash is performed as a result of any action except a manual stash request, e.g. checking
out a new branch and requesting a stash then any files not tracked by git will also be saved to the stash.

Update submodules on checkout
Update the commits for submodules when updating the commit for the current repository.

Follow renames in file history
Try to follow file renames in the file history.

Follow exact renames and copies only
Follow file renames and copies for which similarity index is 100%. That is when a file is renamed or
copied and is committed with no changes made to its content.

Open last working dir on startup
When starting Git Extensions, open the last used repository (bypassing the Dashboard).

Default clone destination
Git Extensions will pre-fill destination directory input with value of this setting on any form used to per-
form repository clone.

Default pull action
The default action for Pull in Main toolbar, see the dropdown list.

Revision grid quick search timeout [ms]
The timeout (milliseconds) used for the quick search feature in the revision graph. The quick search will
be enabled when you start typing and the revision graph has the focus.

Telemetry

Yes, I allow telemetry!
Allow that Git Extensions collect anonymous information about usage.

17.1.2 Appearance

This page contains settings that affect the appearance of the application.

General

Show relative date instead of full date
Show relative date, e.g. 2 weeks ago, instead of full date. Displayed on the commit tab on the main
Revision Graph window.

Show current branch names in the dashboard and the recent repositories dropdown menu
Also show the branch in Left panel.

Show current branch in Visual Studio
Determines whether or not the currently checked out branch is displayed on the Git Extensions toolbar
within Visual Studio.

Auto scale user interface when high DPI is used
Automatically resize controls and their contents according to the current system resolution of the display,
measured in dots per inch (DPI).

Truncate long filenames
This setting affects the display of filenames in a component of a window e.g. in the Diff tab of the Revision
Graph window. The options that can be selected are:

e None - no truncation occurs; a horizontal scroll bar is used to see the whole filename.

17.1. Git Extensions 85



Git Extensions Documentation, Release 4.1

e Compact - no horizontal scroll bar. Filenames are truncated at both start and end to fit into the width
of the display component.

* Trimstart - no horizontal scroll bar. Filenames are truncated at the start only.

e FileNameOnly - the path is always removed, leaving only the name of the file, even if there is
space for the path.

Author images

Show author's avatar column in the commit graph
If checked, avatar images are downloaded for commit authors and shown in the revision grid.

Show author's avatar in the commit info view
If checked, avatar images are downloaded for commit authors and shown in the commit info view.

Cache images (days)
The number of days to elapse before the avatar image source is checked for any changes to an authors
image.

Avatar provider
The avatar provider setting determines the source from which avatar images are requested.

e Default - The default avatar provider loads a user defined avatar images, depending on the email
address, from GitHub or Gravatar. If no user defined image could be found, a fallback images is used.

* None - If selected, no user-defined images are loaded and the fallback is evaluated immediately.

* Custom- An advanced mode that allows you to set one or more custom avatar provider services (e.g.
Libravatar) by providing URL templates.

URL Template Syntax

The URL template syntax consists of regular URLs to avatar images, that can be enriched with variables,
which are substituted before evaluation. Those variables are encoded using curly brackets { } and can be
used like this: https://example.avatar.service/u/{email}/avatar.png. If a request
fails (http 400 and 500 errors) or does not provide a valid image, the next URL is used. More URLs can
be specified by chaining them together with semicolons (*;”) like so: https://providerl.com/
{shal}.png;https://provider2.com/{shal}.png. If all custom URLs fail to provide an
avatar image, the applications internal fallback mechanism will provide one for that user. The variable
names are case insensitive. If a variable is not found (for example because of typo or it does not exist), it

is substituted with an empty string, so the resulting URL never contains the curly brackets.
The following variables are currently supported:

* name - The name of the commit author (git config user.name). Special characters are URL en-
coded.

* email - The email address of the commit author (git config user.email). Special characters are
URL encoded.

* md5 - A lowercase hex representation of the MDS5 hash of the normalized (all characters lowercase)
email address (without URL encoding). This hash is compatible with Gravatar and thus compatible
with a lot of similar services.

e shal - Like the md5 variable but with SHA1 as hash algorithm.
* sha256 - Like the md5 variable but with SHA256 as hash algorithm.

* imagesize - Represents the requested avatar size in pixels.

17.1. Git Extensions 86



Git Extensions Documentation, Release 4.1

A complete working configuration might look something like this: https://www.libravatar.
org/avatar/{md5}?s={imageSize}&default=404;https://avatar.tobi.sh/
{md5}?size={imageSize}

Fallback generated avatar style
The configured fallback determines how authors without a user-defined avatar are presented. Besides
Author Initials all other options are provided by Gravatar. Details about their fallback modes can
be found here https://en.gravatar.com/site/implement/images/ in the section ‘“Default Image”. Author
Initials are generated by the application internally and require no network connection to be displayed.

Clear image cache
Clear the cached avatars.

Language

Language (restart required)
Choose the language for the Git Extensions interface.

Dictionary for spelling checker
Choose the dictionary to use for the spelling checker in the Commit dialog.

17.1.3 Sorting

Sort revisions by
This setting causes commits in the revision grid to be sorted by Git default (commit date), author date or topol-
ogy. Sorting by other than Git default may delay rendering of the revision graph.

Sort branches by
The sort order for branches in Main toolbar and Left panel in a dropdown.

Order branches
Order the branches within the sorting in Sort branches by.

Prioritized branches
Regex to prioritize branch names in the left panel and commit info. The branches matching the pattern will be
shown before the others. Separate the priorities with *;’.

Prioritized remotes
Regex to prioritize branch names in the left panel and commit info. The branches matching the pattern will be
shown before the others. Separate the priorities with *;’.

17.1.4 Colors

This page contains settings to define the colors used in the application.

Revision graph

Multicolor branches
Displays branch commits in different colors if checked. If unchecked, all branches are shown in the same
color. This color can be selected.

Draw alternate background
Alternate background colour for revision rows.

Draw non relatives graph gray
Show commit history in gray for branches not related to the current branch.

17.1. Git Extensions 87


https://en.gravatar.com/site/implement/images/

Git Extensions Documentation, Release 4.1

Draw non relatives text gray
Show commit text in gray for branches not related to the current branch.

Highlight authored revisions
Highlight revisions committed by the same author as the selected revision.

Fill Git ref labels
Fill labels in the revision grid.

Theme
Git Extensions allows that some application colors are changed. A few themes are included.

For more information see the README in the themes folder or GitHub.

Open Theme folder
Open the folder with the themes in Windows Explorer.

Colorblind
Adjust the theme colors for colorblind users (if specified in the theme).

Use system—defined visual style
Use a the system wide visual style (will not look good with all themes).

17.1.5 Fonts

Fonts

Code font
The font used for the display of file contents.

Application font
The font used on Git Extensions windows and dialogs.

Commit font
The font used for entering a commit message in the Commit dialog.

Monospace font
The font used for the commit id in the revision graph.

17.1.6 Console style

Settings for the ConEmu console tab.

Console settings

Console style
Choose one of the predefined ConEmu schemes. See https://conemu.github.io/en/SettingsColors.html.

Font
Console font size.

17.1.7 Revision Links

You can configure here how to convert parts of a revision data into clickable links. These links will be located under
the commit message on the Commit tab in the Related links section.

17.1. Git Extensions 88


https://github.com/gitextensions/gitextensions/blob/master/GitUI/Themes/README.md
https://conemu.github.io/en/SettingsColors.html

Git Extensions Documentation, Release 4.1

IIF; spdra?ﬂf_featurefﬁaﬂl[} spdra70/feature/5853 el E I

RSN NN o T S NP ) [P R—— 1 T [

| ISR (S L 1 R

& Commit EZ pif 'TF Filetree J° GPG @ Console
Author:

Henk Westhuis <henk.westhuis@ultimo.com>
Date:

3 days ago (2018-12-05 13:41:22)

Commit hash:  c046f57c93%e7ddabldasb7d21c26a043e0792d
Child: 1b390%44a3
Parent: Gbcd321707

#5853:

Use stack instead of recursion in EnsureScorelsAbove

Related links: View on GitHub, [ssue 5853
Contained in branches: spdr270/ feature/3833
Contained in tags: v3.00.00

Drerives from tag: v2.00.00-rc2 + 53 commits

The most common case is to convert an issue number given as a part of commit message into a link to the coresponding

issue-tracker page. The screenshot below shows an example configuration for GitHub issues. You could add this quite
generic GitExtensions.settings file to the root of your repository.

17.1. Git Extensions

89


https://github.com/gitextensions/GitExtensionsDoc/blob/master/source/files/settings/GitExtensions.settings

Git Extensions Documentation, Release 4.1

3 Settings - Revision links x

| Type to find | Settings source:
() Effective () Local For current repository (®) iDistributed with current repositary () Global for all repositaries

N X Git Extensions
L General

» 5% Appearance Categories
. CD Revision links T
ﬁ_t_f*‘ Build server inkegration 5 GiHub N

i Scripts 3 GitHub - commit - i
) Hotkeys Use remates |upstream|0rlgln | [[] only use the first match

Marne |1 GitHUb - issues | [] Enabled ﬁ Help

Remate data

M Shell extension

). ﬁﬁ? Advanced Search in [ URL [ Push URL
’ﬁ Deveied Search pattern |(7y~(@t@Ihtep(s?)e/ N~/ 101 gt
> -4Ap Gt Revision data
> @ Flugins
Searchin [ Message  [+] Local branch name  [+] Remote branch name

Search pattern |(?i)(?<!pull request |pr[ 173 |{{{Featiure)?)|Fidlf_-Tid+ |

Mested pattern |'l.d+ |

Links

Zaption LRI
ssue {4} hitkp{

Remaove

K | | Cancel | | Apply

Categories

Lists all the currently defined Categories. Click the Add button to add a new empty Category. The default name is
‘new’. To remove a Category select it and click the Remove button.

Name
This is the Category name used to match the same categories defined on different levels of the Settings.

Enabled
Indicates whether the Category is enabled or not. Disabled categories are skipped while creating links.

Remote data
It is possible to use data from remote’s URL to build a link. This way, links can be defined globally for all
repositories sharing the same URL schema.

Use remotes
Regex to filter which remotes to use. Leave blank to create links not depending on remotes. If full names
of remotes are given then matching remotes are sorted by its position in the given Regex.

Only use the first match
Check if you want to create links only for the first matching remote.

Search in
Define whether to search in URL, Push URL or both.

17.1. Git Extensions 90



Git Extensions Documentation, Release 4.1

Revision data

Search in
Define which parts of the revision should be searched for matches.

Note that the branch name is only searchable in the branch heads.

Search pattern
Regular expression used for matching text in the chosen revision parts. Each matched fragment will be
used to create a new link. More than one fragment can be used in a single link by using a capturing group.
Matches from the Remote data group go before matches from the Revision data group. A capturing group
value can be passed to a link by using zero-based indexed placeholders in a link format definition e.g. {0}.

Nested pattern
Nested pattern can be used when only a part of the text matched by the Search pattern should be
used to format a link. When the Nested pattern is empty, matches found by the Search pattern are
used to create links.

Links: Caption/URI
List of links to be created from a single match. Each link consists of the Caption to be displayed and the
URT to be opened when the link is clicked on. In addition to the standard zero-based indexed placeholders, the
$COMMIT_HASHS placeholder can be used to put the commit’s hash into the link. For example: https://
github.com/gitextensions/gitextensions/commit/%$COMMIT_HASH%

17.1.8 Build server integration

This page allows you to configure the integration with build servers. This allows the build status of each commit to be
displayed directly in the revision log, as well as providing a tab for direct access to the Build Server build report for
the selected commit.

Enable build server integration
Check to globally enable/disable the integration functionality.

Show build result page
Show a page with build information in 7abs.

Build server type
Select an integration target.

AppVeyor

Account name
AppVeyor account name. You don’t have to enter it if the projects you want to query for build status are
public.

API token
AppVeyor API token. Required if the Account name is entered. See https://ci.appveyor.com/api-token

Project (s) name (s)
Projects names separated with ‘I, e.g. gitextensions/gitextensions|jbialobr/gitextensions

Display tests results in build status summary for every build result
Include tests results in the build status summary for every build result.

Azure DevOps

Project URL
Enter the URL of the server (and port, if applicable).

17.1. Git Extensions 91


https://ci.appveyor.com/api-token

Git Extensions Documentation, Release 4.1

Build definition name
Limit the builds if desired.

Rest API token
Read token for the build server.

Jenkins

Jenkins server URL
Enter the URL of the server (and port, if applicable).

Project name
Enter the name of the project which tracks this repository in Jenkins. Separate project names with
Multi-branch pipeline projects are supported by adding “?m” to the project name.

“l”

Ignore build for branch
The plugin will normally display the last build for a certain commit. If Jenkins starts several builds for one
commit, it is possible to ignore the non interesting builds if all builds are not interesting.

TeamCity

TeamCity server URL
Enter the URL of the server (and port, if applicable).

Project name
Enter the name of the project which tracks this repository in TeamCity. Multiple project names can be
entered separated by the | character.

Build Id Filter
Enter a regexp filter for which build results you want to retrieve in the case that your build project creates
multiple builds. For example, if your project includes both devBuild and docBuild you may wish to apply
a filter of “devBuild” to retrieve the results from only the program build.

17.1.9 Scripts

This page allows you to configure specific commands to run before/after Git actions or to add a new command to the
User Menu. The top half of the page summarises all of the scripts currently defined. If a script is selected from the
summary, the bottom half of the page will allow modifications to the script definition. A hotkey can also be assigned
to execute a specific script. See Hotkeys.

Add
Adds a new script. Complete the details in the bottom half of the screen.

Remove
Removes a script.

Up/Down Arrows
Changes order of scripts.

Scripts

Name
The name of the script.

Enabled
If checked, the script is active and will be performed at the appropriate time (as determined by the On
Event setting).

17.1. Git Extensions 92



Git Extensions Documentation, Release 4.1

Command
Enter the command to be run. This can be any command that your system can run e.g. an executable
program, a .bat script, a Python command, etc. Use the Browse button to find the command to run. There
are some special prefixes which change the way the script is executed:

* plugin:<plugin-name>: Where <plugin-name> is the name of a plugin (refer Plugins). If
a plugin with that name is found, it is run.

* navigateTo:<script-path>: Where <script-path> is the path to a file containing the
script to run. That script is expected to return a commit hash as the first line of its output. The UI will
navigate to that commit once the script completes.

Arguments
Enter any arguments to be passed to the command that is run. The Help button displays items that
will be resolved by Git Extensions before executing the command e.g. {cBranch} will resolve to the
currently checked out branch, {UserInput} will display a popup where you can enter data to be passed to
the command when it is run.

Execute on event
Select when this command will be executed, either before/after certain Git commands, or displayed on the
User Menu bar. Since the git pull command includes a fetch, before/after fetch events are triggered on pure
fetches as well as on pulls. For the pull command the script execution order ist BeforePull - BeforeFetch -
git pull - AfterFetch - AfterPull.

Icon
Select an icon to be displayed in a menu item when the script is marked to be shown in the user menu bar.

Script behavior

Ask confirmation
If checked, then a popup window is displayed just before the script is run to confirm whether or not the
script is to be run. Note that this popup is not displayed when the script is added as a command to the User
Menu (On Event setting is ShowInUserMenuBar).

Run in background
If checked, the script will run in the background and Git Extensions will return to your control without
waiting for the script to finish.

Is PowerShell script
If checked, the command is started through a powershell.exe process. If the Run in background is checked,
the powershell console is closed after finishing. If not, the powershell console is left for the user to close it
manually.

Script context

Show in RevisionGrid
If checked, the script is added to the context menu that is displayed when right-clicking on a line in the
Revision Graph page.

17.1.10 Hotkeys

This page allows you to define keyboard shortcuts to actions when specific pages of Git Extensions are displayed. The
HotKeyable Items identifies a page within Git Extensions. Selecting a Hotkeyable Item displays the list of commands
on that page that can have a hotkey associated with them. The Hotkeyable Items consist of the following pages

1. Commit: The page displayed when a Commit is requested via the Commit User Menu button or the
Commands/Commit menu option.

17.1. Git Extensions 93



Git Extensions Documentation, Release 4.1

2. Browse: The Revision Graph page (the page displayed after a repository is selected from the dashboard (Start
Page)).

LeftPanel: The left panel for Browse with branches etc.

RevisionGrid: The list of commits in Browse and other forms.

FileViewer: The page displayed when viewing the contents of a file.

FormMergeConflicts: The page displayed when merge conflicts are detected that need correcting.
BrowseDiff: Diff tab in Browse.

RevisionFileTree: The FileTree tab in Browse.

Stash

© ® 2N kW

10. Scripts: Shows scripts defined in Git Extensions and allows shortcuts to be assigned. Refer Scripts.

Hotkey
After selecting a Hotkeyable Item and the Command, the current keyboard shortcut associated with the com-
mand is displayed here. To alter this shortcut, click in the box where the current hotkey is shown and press the
new keyboard combination.

Rpply
Click to apply the new keyboard combination to the currently selected Command.

Clear
Sets the keyboard shortcut for the currently selected Command to ‘None’.

Reset all Hotkeys to defaults
Resets all keyboard shortcuts to the defaults (i.e. the values when Git Extensions was first installed).

17.1.11 Shell extension

Windows explorer integration
Enable Git Extensions to add items to the context menu when a file/folder is right-clicked within Windows
Explorer. One of these items is Git Extensions from which a further (cascaded) menu can be opened.

Cascaded context menu
This settings page determines which items will appear on that cascaded menu and which will appear in the main
context menu. Items that are checked will appear in the cascaded menu.

To the right side of the list of check boxes is a preview that shows you how the Git Extensions menu items will
be arranged with your current choices.

By default, what is displayed in the context menu also depends on what item is right-clicked in Windows
Explorer; a file or a folder (and whether the folder is a Git repository or not). If you want Git Extensions to
always include all of its context menu items, check the box Always show all commands.

17.1.12 Advanced

This page allows advanced settings to be modified. Refer Confirm actions.

Checkout

Always show checkout dialog
Always show the Checkout Branch dialog when swapping branches. This dialog is normally only shown
when uncommitted changes exist on the current branch

17.1. Git Extensions 94



Git Extensions Documentation, Release 4.1

Use last chosen "local changes" action as default action.
This setting works in conjunction with the ‘Git Extensions/Check for uncommitted changes in checkout
branch dialog’ setting. If the ‘Check for uncommitted changes’ setting is checked, then the Checkout
Branch dialog is shown only if this setting is unchecked. If this setting is checked, then no dialog is shown
and the last chosen action is used.

General

Don’t show help images
In the Pull, Merge and Rebase dialogs, images are displayed by default to explain what happens with
the branches and their commits and the meaning of LOCAL, BASE and REMOTE (for resolving merge
conflicts) in different merge or rebase scenarios. If checked, these Help images will not be displayed.

Always show advanced options
In the Push, Merge and Rebase dialogs, advanced options are hidden by default and shown only after you
click a link or checkbox. If this setting is checked then these options are always shown on those dialogs.

Use Console Emulator for console output in command dialogs
Using Console Emulator for console output in command dialogs may be useful the running command
requires an user input, e.g. push, pull using ssh, confirming gc.

Auto normalise branch name
Controls whether branch name should be automatically normalized as per git branch naming rules. If
checked, any illegal symbols will be replaced with the replacement symbol of your choice.

Commit

Push forced with lease when Commit & Push action is performed with Amend option checke
In the Commit dialog, users can commit and push changes with one click. However, if changes are meant
to amend an already pushed commit, a standard push action will be rejected by the remote server. If this
option is checked, a push action with ——force-with-lease switch will be performed instead. The
-—force-with-1lease switch will be added only when the Amend option is checked.

Updates

Check for updates weekly
Check for newer version every week.

Check for release candidate versions
Include release candidate versions when checking for a newer version.

17.1.13 Confirmations

This page allows you to turn off certain confirmation popup windows by unchecking the checkboxes.

Confirm actions

Commits

Amend last commit
Display the popup warning about the rewriting of history when you have elected to amend the last com-
mitted change.

Undo last commit
Display the warning when undoing (resetting) the commit for the current branch in Main toolbar.

17.1. Git Extensions 95



Git Extensions Documentation, Release 4.1

Commit when no branch is currently checked out
When committing changes and there is no branch currently being checked out, then GitExtensions warns
you and proposes to checkout or create a branch.

Rebase on top of selected commit
Rebase context menu command popup in revision graph.

Branches

Fetch and prune all
Browse fetch/prune popup.

Push a new branch for the remote
Warning when pushing a new branch that does not exist on the remote repository.

Add a tracking reference for newly pushed branch
Warning when you push a local branch to a remote and it doesn’t have a tracking reference, you are asked
to confirm whether you want to add such a reference. If this setting is unchecked, a tracking reference will
always be added if it does not exist.

Delete unmerged branches
Display the warning when deleting a branch that has not been merged to the current branch (use —force).

Stashes

Apply stashed changes after successful pull
In the Pull dialog, if Auto stash is checked, then any changes will be stashed before the pull is per-
formed. Any stashed changes are then re-applied after the pull is complete. If this setting is unchecked,
the stashed changes are applied with no confirmation popup.

Apply stashed changes after successful checkout
In the Checkout Branch dialog, if Stash is checked, then any changes will be stashed before the branch
is checked out. If this setting is unchecked, then the stashed changes will be automatically re-applied after
successful checkout of the branch with no confirmation popup.

Drop stash
Popup when dropping a stash.

Rebase / conflict resolution

Resolve conflicts
If unchecked, then when conflicts are detected GitExtensions will start the Resolve conflicts dialog auto-
matically without any prompt.

Commit changes after conflicts have been resolved
Uncheck this option to start the Commit dialog automatically after all conflicts have been resolved.

Confirm for the second time to abort a merge
When aborting a merge, rebase or any other operation that caused conflicts to be resolved, an user is
warned about the consequences of aborting and is asked if he/she wants to continue. If the user chooses to
continue the aborting operation, then he/she is asked for the second time if he/she is sure that he/she wants
to abort. Uncheck this option to skip this second confirmation.

Submodules

Update submodules on checkout
When you check out a branch from a repository that has submodules, you will be asked to update the
submodules. If this setting is not checked, the submodules will be updated without asking.

Worktrees

Switch Worktree
Switch worktree popup.

17.1. Git Extensions 96



Git Extensions Documentation, Release 4.1

17.1.14 Detailed

This page allows detailed settings to be modified.

Push window

Get remote branches directly from the remote
Git caches locally remote data. This data is updated each time a fetch operation is performed. For a better
performance GitExtensions uses the locally cached remote data to fill out controls on the Push dialog.
Enable this option if you want GitExtensions to use remote data received directly from the remote server.

Merge window

Add log messages
If enabled, then in addition to branch names, git will populate the log message with one-line descrip-
tions from at most the given number actual commits that are being merged. See Git merge <https://git-
scm.com/docs/git-merge#Documentation/git-merge.txt—loglingt>.

Email settings for sending patches

SMTP server name
SMTP server to use for sending patches.

Port
SMTP port number to use.

Use SSL/TLS
Check this box if the SMTP server uses SSL or TLS.

17.1.15 Browse repository window

General

Default shell
Choose one of the predefined terminals in Console tab and browser popup.

Show file history in the main window
Open file history in Browse Repository window instead of the deprecated File history window.

Show blame in diff view
Show blame in the diff view tab Diff instead of switching to File tree tab.

Tabs

Show the Console tab
Show the Console tab in the Browse Repository window.

Show GPG information
Show tab for GPG information if available.

17.1.16 Commit dialog

This page contains settings for the Git Extensions Commit dialog. Note that the dialog itself has further options.

17.1. Git Extensions 97



Git Extensions Documentation, Release 4.1

Behaviour

Provide auto-completion in commit dialog

Enables auto-completion in commit dialog message box. Auto-completion words are taken from the changed
files shown by the commit dialog. For each file type there can be configured a regular expression that de-
cides which words should be considered as candidates for auto-completion. The default regular expressions
included with Git Extensions can be found here: https://github.com/gitextensions/gitextensions/blob/master/
GitExtensions/AutoCompleteRegexes.txt You can override the default regular expressions by creating an Auto-
CompleteRegexes.txt file in the Git Extensions installation directory.

Show errors when staging files
If an error occurs when files are staged (in the Commit dialog), then the process dialog showing the results
of the git command is shown if this setting is checked.

Ensure the second line of commit message is empty
Enforces the second line of a commit message to be blank.

Compose commit messages in Commit dialog
If this is unchecked, then commit messages cannot be entered in the commit dialog. When the Commit
button is clicked, a new editor window is opened where the commit message can be entered.

Number of previous messages in commit dialog
The number of commit messages, from the top of the current branch, that will be made available from the
Commit message combo box on the Commit dialog.

Remember 'Amend commit' checkbox on commit form close
Remembers the state of the ‘Amend commit’ checkbox when the ‘Commit dialog’ is being closed. The
remembered state will be restored on the next ‘Commit dialog’ creation. The ‘Amend commit’ checkbox
is being unchecked after each commit. So, when the ‘Commit dialog’ is being closed automatically after
commiting changes, the ‘Amend commit’ checkbox is going to be unchecked first and its state will be
saved after that. Therefore the checked state is remembered only if the ‘Commit dialog’ is being closed by
an user without commiting changes.

Show additional buttons in commit button area
Tick the boxes in this sub-group for any of the additional buttons that you wish to have available below
the commit button. These buttons are considered additional to basic functionality and have consequences
if you should click them accidentally, including resetting unrecorded work.

17.1.17 Diff viewer

Settings for Diff.

Remember the 'Ignore whitespaces' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Ignore whitespaces’ preference. Use the
remembered value the next time GitExtensions is opened.

Remember the 'Show nonprinting characters' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Show nonprinting characters’ preference.
Use the remembered value the next time GitExtensions is opened.

Remember the 'Show entire file' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Show entire file’ preference. Use the
remembered value the next time GitExtensions is opened.

Remember the 'Number of context lines' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Number of context lines’ preference.
Use the remembered value the next time GitExtensions is opened.

17.1. Git Extensions 98


https://github.com/gitextensions/gitextensions/blob/master/GitExtensions/AutoCompleteRegexes.txt
https://github.com/gitextensions/gitextensions/blob/master/GitExtensions/AutoCompleteRegexes.txt

Git Extensions Documentation, Release 4.1

Remember the 'Show syntax highlighting' preference
Remember in the GitExtensions settings the latest chosen value of the ‘Number of context lines’ preference.
Use the remembered value the next time GitExtensions is opened.

Omit uninteresting changes from combined diff
Includes git —cc switch when generating a diff. See git diff-tree <https://git-scm.com/docs/git-diff-
tree#Documentation/git-diff-tree.txt—cc>

Enable automatic continuous scroll (without ALT button)
For file status lists like in Diff’ and Commit it is possible to scroll continuously to the next (or previous) file with
the mouse wheel and ALT button. This setting allows scrolling to the next file with only the mouse wheel.

Open Submodule Diff in separate window
If enabled then double clicking on a submodule in the Diff file list opens a new instance of GitExtensions with
the submodule as the selected repository. If disabled, the File history window is opened for the double clicked
submodule.

Show file differences for all parents in browse dialog
The Diff can show more than one diff, depending on the selections in Revision graph.

* For a single selected commit, show the difference with its parent commit.
* For a single selected merge commit, show the difference with all parents.

¢ For two selected commits with a common ancestor (BASE) or two ranges described below, show the
difference between the commits as well as the difference from BASE to the commits. See below for more
details about icons and range diffs.

* For multiple selected commits (up to four), show the difference for all the first selected with the last
selected commit.

¢ For more than four selected commits, show the difference from the first to the last selected commit.
Common BASE icons

If the selected commits have a common BASE, the icons in the file list has an overlay on the icon with informa-
tion where the file has been changed.

* A Change done in first (A) commit.
* B Change done in selected (B) commit. (Last selected commit.)
* = Same change in both commits.

* / Unequal changes are done in the commits.

17.1. Git Extensions 99



Git Extensions Documentation, Release 4.1

Working directory
Commit index

p tmp/b Ji

| master | Initial

ES Diff U Filetree @@ Console
Filter files using @ regular expression... -
() Diff with A TecBel0e: tmp/aa ~

1 ab

1 ab2

Jub

4 b2

Aa

= al

== a3

% Range diff 31 21 BASE 0c00aSfe: master

() Dnff BASE with B 03a16792: tmp/b A
1 ab
= ab2
Ze
2
Jub
=+ b2
(7) Diff BASE with A TecBel0e: tmp/aa A
1 ab
= ab2
Ze
2
Sha
=4fr a2

gadia

Range diff

git range-diff <https://git-scm.com/docs/git-range-diff> shows the difference between two versions of a patch
series with a common BASE. The command can require a lot of resources and it is possible to define the ranges
for Git .

17.1. Git Extensions 100



Git Extensions Documentation, Release 4.1

e If two commits are selected, all commits from BASE to selected (B) and first (A) are included. With Git
this is written as A... B, BASE A B or BASE..A BASE..B.

Example where one commit differs for two branches (but the branches have identical information).

m PostRepaository change: Shared GitRefs() (#9735) Share the derived references instead of calling GetRefs()

Mergetool and difftoc] commands are now populated if paths are manually configured (#9780) Fix #2912 Command is altere

Load app celors from 55 themes (#9734)
upstream, master R
Mergetool and difftool commands are now populated if paths are manually configured (#9780) Fix #8918 Command is altere:

Load app colors from CSS themes (#3734)

signed CLA (#9781)

|upstream/translations_plugins—B_S_kn| |upstreamftranslatinns_ui—B_S_ko| W5L: force-push was inserted incorrectly (23760)

W5L: Git internal paths were incorrectly resolved

EZ Diff T2 Filetree @M Console
1: ad3cBaade

A

P : T .
Filter files using a regular expression... v

Diff with A 07d37634: upstream/master

=8 oososssos signed CLA (#9781)

2: 772488976 = 1: 32cceaf2a Load app colors from £S5 themes

Es ) 3: 771b327eb = 2: ¢59a39918 Mergetool and difftocl commands

=5 Range diff 41 31 BASE 1097a210: upstream/trans 4. g7ds7634f ! 3: 186b93115 PostRepository change: Shared G:
(21) Diff BASE with B 186b9311: master @@ Commit message

(21) Diff BASE with A 07d87634: upstream,/master

Share the derived references instead of calling GetRi

+ Amended the file in the skipped commit
+

## GitUI/BranchTreePanel/RepoObjectsTree.BranchTree.cs ;
@@

-ingusing System.Collections.Generic;
@@ UnitTests/GitCommands.Tests/Git/FilteredaitRefsProvide
+ }

)

+)
+
+ ## contributors.txt ##
Hi@ contributors.txt: YYYY/MM/DD, github id, Full name, el
+ 2821/1@/22, calebnhay, Caleb N. Hay, caleb(at)calebnhay
+ 2821/18/28, matthiaslischka, Matthias Lischka, matthias
+ 2821/11/13, helg, Holger Schmidt, leroyz.mailaccount(at
+-2@21/12/86, Tyrrrz, Alexey Golub, tyrrrz(at)gmail.com
+ % No newline at end of file
++2821/12/86, Tyrrrz, Alexey Golub, tyrrrz(at)gmail.com
++2821/12/29, blazejszuca, Bhal¥ej Szuca, blazej.szuca+gi-
+ \ No newline at end of file

 If two ranges are selected with four selected commits (where the number indicates the click order) AI..A2
B3..B4 where BASE is parent to Al and B3 as well as A/ is a parent to A2 and B3 is a parent to B4. Note
that A2 is considered as first selected commit in the diff.

Example where only two of the commits are compared.

17.1. Git Extensions 101



Git Extensions Documentation, Release 4.1

m PostRepository change: Shared GitRefs() (#9735) Share the derived references instead of calling GetRefs() m
Mergetool and difftool commands are now populated if paths are manually configured (#9780) Fix #2918 Command is altered f

Load app colors from C55 themes (#9734)

upstream,/master

signed CLA (#9781)

|upstreamftranslations_plugins-E_S_ko| |upstreamftranslations_ui-E_S_ko W5L: force-push was inserted incorrectly (#9760)

WS5L: Git internal paths were incorrectly resohved

EZ Diff P Filetree @@ Console

1: 771b327eb = 1: ¢59339918 Mergetool and difftool commands a
2: @7d87e34f | 2: 186b93115 PostRepository change: Shared Git
@@ Commit message

Filter files using @ requlor expression... -
Diff with A 07d87634: upstream/master
% Range diff 41 3t BASE 1097a210: upstream,trans

(21) Diff BASE with B 186b9311: master Share the derived references instead of calling GetRef

(21) Diff BASE with A 07d@7634: upstream/master
+ Amended the file in the skipped commit
+

## QitUI/BranchTreePanel/RepoObjectsTree.BranchTree.cs ##

0@
-imgusing System.Collections.Generic;
@@ UnitTests/GitCommands.Tests/Git/FilteredGitRefsProviderT
+ }
+ 2
£
+
+ ## contributors.txt ##
Hi@ contributors.txt: Yyyy/MM/DD, github id, Full name, ema
+ 2821/1@/22, calebnhay, Caleb N. Hay, caleb{at)calebnhay(d
+ 2821/18/28, matthiaslischka, Matthias Lischka, matthias.l
+ 2821/11/13, helg, Holger Schmidt, leroyz.mailaccount(at)g
+-2821/12/86, Tyrrrz, Alexey Golub, tyrrrz(at)gmail.com
+ \ No newline at end of file
++2821/12/86, Tyrrrz, Alexey Golub, tyrrrz(at)gmail.com
++2821/12/29, blazejszuca, BAaliXej Szuca, blazej.szucatgite
+ \ No newline at end of file

Show all available difftools
Git Extensions uses the default Git GUI diff and merge tool in Config. This setting enables a submenu for many
diff and merge tool menus with all tools known by Git. This enables use of specific tools in certain situations
like using TortoiseGitIDiff specifically for images.

17.1. Git Extensions 102



Git Extensions Documentation, Release 4.1

EZ Diff %R Filetree @M Console

files using o regulor expressi -
iles using a reqular expression...

(13) Diff with A 59a3991: Mergetool and difftocl

Filte

/ﬁ GitUl/Branc Reset file(s) to

/‘GItUL"BI'EﬂC &  Cherry pick changes

diff --git a/contributors.txt b/contributors.txt
index 238c8leSe..dbedad46e 190644
--- afcontributors.txt

[3

tors.txt
L5 @@ Yvvy/MM/DD, github id, Full name, email
alebnhay, Caleb N. Hay, caleb(at)calebnhay(dot)com

# Gitu/Branc[E3 " Open with difftool

]

& GitUl/Branc
# GitUl/Branc
& GitUl/Com

Open working directory file with...

Open this revision (temp file)

# GitUlUserc| ©

;‘ GitUl/ UserC |l Save selected as...
itUl/User

/‘ Plugins/Git |+ Editworking directory file

= Plugins/Gitll [ Copy full path(s)

= Plugins/Git | Show in folder

+ UnitTests/Gi

Show in File tree
Filter file in grid
File history
Blame

Find

FOSE 1=

Open in Visual Studic

Sort by...

&

Open this revision with... (temp file)

Ctrl+Q
Ctrl+F3
Ctrl+Shift+F3
Ctrl+5

F4

Cirl+C

m T m oo

Ctrl+F

amx. at

| First -> Second

Second -» Working directory
First -> Working directory
Rermember Second for diff

Rermember First for diff

Note for WSL Git

tortoisediffox F3
diffmerge
kdiff3

meld

pdmerge
semanticmerge
smerge
sourcetree
tortoisediff
tortoisediff2
TertoiseGitl Diff
tortoisemerge
vscode
vediffrerge

winmerge

Disable this dropdown

For Notes for WSL Git the Windows Git version is always used for diff and merge tools so the same tools
is available in WSL as in Windows.

Vertical ruler position

Position for ruler in TextEditor controls. Set to O to disable. (This should be moved to the TextEditor context

menu.)

17.1.18 Blame viewer

Settings for blame in File tree and Diff.

Blame settings

Ignore whitespace

See git blame -w.

Detect move and copy in this file

See Git blame -M.

Detect move and copy in all files

See Git blame -C.

Display result settings

Various settings for the blame viewer.

17.1. Git Extensions

103


https://git-scm.com/docs/git-blame#Documentation/git-blame.txt--Cltnumgt

Git Extensions Documentation, Release 4.1

17.1.19 SSH

This page allows you to configure the SSH client you want Git to use. Git Extensions is optimized for PuTTY. Git
Extensions will show command line dialogs if you do not use PuTTY and user input is required (unless you have
configured SSH to use authentication with key instead of password). Git Extensions can load SSH keys for PuTTY
when needed.

Specify which ssh client to use

PuTTY
Use PuTTY as SSH client.

OpenSSH
Use OpenSSH as SSH client.

Other ssh client
Use another SSH client. Enter the path to the SSH client you wish to use.

Configure PuTTY
For PuTTY, the paths to the executable must be specified.

Path to plink.exe
Enter the path to the plink.exe executable.

Path to puttygen
Enter the path to the puttygen.exe executable.

Path to pageant
Enter the path to the pageant.exe executable.

Automatically start authentication
If an SSH key has been configured, then when accessing a remote repository the key will automatically be
used by the SSH client if this is checked.

17.2 Git

The settings that are used by Git are stored in the configuration files of Git. The global settings are stored in the file
called .gitconfig in the user directory. The local settings are stored in the . git\config file of the repository.

17.2.1 Paths

This page contains the settings needed to access git repositories. The repositories will be accessed using external tools.
For Windows usually “Git for Windows” is used. Git Extensions will try to configure these settings automatically.

Git

Command used to run git (git.cmd or git.exe)
Needed for Git Extensions to run Git commands. Set the full command used to run git (“Git for Windows”).
Use the Browse button to find the executable on your file system. (Cygwin Git may work but is not
officially supported.)

Path to Linux tools (sh).
A few Linux tools are used by Git Extensions. When Git for Windows is installed, these tools are located
in the bin directory of Git for Windows. Use the Browse button to find the directory on your file system.
Leave empty when it is in the path.

17.2. Git 104



Git Extensions Documentation, Release 4.1

Environment

Change HOME
This button opens a dialog where the HOME directory can be changed. The global configuration file used
by git will be put in the HOME directory. On some systems the home directory is not set or is pointed to
a network drive. Git Extensions will try to detect the optimal setting for your environment. When there is
already a global git configuration file, this location will be used. If you need to relocate the home directory
for git, click the Change HOME button to change this setting. Otherwise leave this setting as the default.

Notes for WSL Git
For Git repos stored in \\ws1$ or \\wsl.localhost directories, Git Extensions executes the WSL Git
executable where possible to improve performance. WSL Git is several times faster than Windows Git (native)
application.

The paths internal to Git Extensions are always in Windows format. Therefore, paths in both inputs and outputs
for WSL Git commands must be translated. For instance \\ws1$\Ubuntu\repo to /repo and c:\repo
to /mnt/c/repo.

The Git Extensions Windows (native) Git executable is still used for the following:

All handling and settings related to Git in Settings. This includes display of Git version as well. However,
if the WSL Git version is too old to be supported, Git Extensions will report this in a popup.

» Custom merge implementation in FormResolveConflicts.
¢ Custom difftool/mergetool list, see Note for WSL Git.
 ScriptRunner and some built-in plugins like FindLargeFiles always use Windows Git.

Some notes: - Git repos accessed in \\wsl.localhost will be displayed as \ \ws1$ (so only one occurrence
in recent lists etc). - Git repos mapped to a drive letter will not use the special WSL handling but Windows Git.
- Files modified in WSL are not reported by Windows FileSystemWatcher, so the GitStatusMonitor will only
report issues at explicit refresh and every minute. - The WSL executable occasionally fail (for instance when
the WSL machine is busy) which will be seen as a Git failure that will result in a popup. You may have to ignore
the popup, refresh or even reopen the application to recover from these failures.

See also Worktrees for Git limitations.

17.2.2 Config

This page contains some of the settings of Git that are used by and therefore can be changed from within Git Exten-
sions. If you change a Git setting from the Git command line using git config then the same change in setting
can be seen inside Git Extensions.

If you change a Git setting from inside Git Extensions then that change can be seen using git config --get. Git
configuration can be global or local configuration. Global configuration applies to all repositories. Local configuration
overrides the global configuration for the current repository.

User name
User name shown in commits and patches.

User email
User email shown in commits and patches.

Editor
Editor that git.exe opens (e.g. for editing commit message). This is not used by Git Extensions, only when you
call git.exe from the command line. By default Git will use the built in editor.

Mergetool
Merge tool used to solve merge conflicts. Git Extensions will search for common merge tools on your system.

17.2. Git 105



Git Extensions Documentation, Release 4.1

Path to mergetool
Path to merge tool. Git Extensions will search for common merge tools on your system.

Mergetool command
Command that Git uses to start the merge tool. Git Extensions will try to set this automatically when a merge
tool is chosen. This setting can be left empty when Git supports the mergetool (e.g. kdiff3).

Difftool
Diff tool that is used to show differences between source files. Git Extensions will search for common diff tools
on your system.

Path to difftool
The path to the diff tool. Git Extensions will search for common diff tools on your system.

DiffTool command
Command that Git uses to start the diff tool. This setting should only be filled in when Git doesn’t support the
diff tool.

Path to commit template
A path to a file whose contents are used to pre-populate the commit message in the commit dialog.

Line endings

Checkout/commit radio buttons
Choose how git should handle line endings when checking out and checking in files. Refer to https:
/ldocs.github.com/en/get-started/getting- started- with- git/configuring- git-to-handle-line-endings

Files content encoding
The default encoding for files content.

17.2.3 Advanced

Various settings for Git.

17.3 Plugins

Plugins provide extra functionality for Git Extensions. Please refer to Plugins.

17.3. Plugins 106


https://docs.github.com/en/get-started/getting-started-with-git/configuring-git-to-handle-line-endings
https://docs.github.com/en/get-started/getting-started-with-git/configuring-git-to-handle-line-endings

cHAPTER 18

Plugins

Git Extensions has a possibility to add functionality in external plugins. Some are distributed with the main program.

Most plugins has settings in Sertings. Most plugins also have UI forms accessible from the main menu in Browse
Repository.

This list is incomplete.

18.1 Bundled

18.1.1 Auto compile submodules
This plugin proposes (confirmation required) that you automatically build submodules after they are updated via the
GitExtensions Update submodules command.

Enabled
Enter true to enable the plugin, or false to disable.

Path to msbuild.exe
Enter the path to the msbuild.exe executable.

msbuild.exe arguments
Enter any arguments to msbuild.

18.1.2 Bitbucket Server

For repositories is hosted on Atlassian Bitbucket Server, the plugin cannot be used for bitbucket.org. For more infor-
mation see: https://www.atlassian.com/software/bitbucket/enterprise/data-center

This plugin will enable you to view and create pull requests for Bitbucket.

Bitbucket Username
The username required to access Bitbucket.

107


https://www.atlassian.com/software/bitbucket/enterprise/data-center

Git Extensions Documentation, Release 4.1

Bitbucket Password
The password required to access Bitbucket.

Specify the base URL to Bitbucket
The URL from which you will access Bitbucket.

Disable SSL verification
Check this option if you do not require SSL verification to access Bitbucket Server.

18.1.3 Create local tracking branches

This plugin will create local tracking branches for all branches on a remote repository. The remote repository is
specified when the plugin is run.

18.1.4 Delete obsolete branches
This plugin allows you to delete obsolete branches i.e. those branches that are fully merged to another branch. It will
display a list of obsolete branches for review before deletion.

Delete obsolete branches older than (days)
Select branches created greater than the specified number of days ago.

Branch where all branches should be merged
The name of the branch where a branch must have been merged into to be considered obsolete.

18.1.5 Find large files

Finds large files in the repository and allows you to delete them.

Find large files bigger than (Mb)
Specify what size is considered a ‘large’ file.

18.1.6 GitHub

This plugin adds a GitHub menu item in the main toolbar.
* Fork/Clone repository
* View pull requests
* Create pull requests
* Add upstream remote

Personal Access Token
The plugin adds configuration for the token generated and retrieved from GitHub. For more information see:
https://github.com/ or the links in the plugin settings.

18.1.7 GitFlow

This plugin permit to manage your _branching model: https://nvie.com/posts/a-successful-git-branching-model/ with
_GitFlow: https://github.com/nvie/gitflow in GitExtension

You should have GitFlow installed to use this plugin.

18.1. Bundled 108


https://github.com/
https://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nvie/gitflow

Git Extensions Documentation, Release 4.1

The GitFlow plugin permit to : - init gitflow in your git repository - create your feature, hotfix, release or support
branch - manage (pull, publish or finish) your existing gitflow branches

18.1.8 Gource

Gource is a software version control visualization tool.
For more information see: https://gource.io/

Path to "gource"
Enter the path to the gource software.

Arguments
Enter any arguments to gource.

18.1.9 Impact Graph

This plugin shows in a graphical format the number of commits and counts of changed lines in the repository performed
by each person who has committed a change.

18.1.10 Periodic background fetch

This plugin keeps your remote tracking branches up-to-date automatically by fetching periodically.

Arguments of git command to run
Enter the git command and its arguments into the edit box. The default command is fetch —--all, which
will fetch all branches from all remotes. You can modify the command if you would prefer, for example, to
fetch only a specific remote, e.g. fetch upstream.

Fetch every (seconds)
Enter the number of seconds to wait between each fetch. Enter O to disable this plugin.

Refresh view after fetch
If checked, the commit log and branch labels will be refreshed after the fetch. If you are browsing the commit
log and comparing revisions you may wish to disable the refresh to avoid unexpected changes to the commit
log.

Fetch all submodules
If checked, also perform git fetch --all recursively on all configured submodules as part of the periodic
background fetch.

18.1.11 Plugin Manager

Plugin to manage third party plugins.

18.1.12 Proxy Switcher

This plugin can set/unset the value for the http.proxy git config file key as per the settings entered here.

Username
The user name needed to access the proxy.

Password
The password attached to the username.

18.1. Bundled 109


https://gource.io/

Git Extensions Documentation, Release 4.1

HttpProxy
Proxy Server URL.

HttpProxyPort
Proxy Server port number.

18.1.13 Release Notes Generator

This plugin will generate ‘release notes’. This involves summarising all commits between the specified from and to
commit expressions when the plugin is started. This output can be copied to the clipboard in various formats.

18.1.14 Statistics

This plugin provides various statistics (and a pie chart) about the current Git repository. For example, number of
commits by author, lines of code per language.

Code files
Specifies extensions of files that are considered code files.

Directories to ignore (EndsWith)
Ignore these directories when calculating statistics.

Ignore submodules
Ignore submodules when calculating statistics (true/false).

18.2 Third party extensions

18.2.1 Gerrit Code Review

The Gerrit plugin provides integration with Gerrit for GitExtensions. This plugin has been based on the git-review
tool.

For more information see: https://www.gerritcodereview.com/

18.2. Third party extensions 110


https://www.gerritcodereview.com/

Git Extensions Documentation, Release 4.1

18.2.2 Jira Commit Hint

x Settings - Plugin: Jira Commit Hint

|"'.-9€ to find | Settings source:

v -3 Git Extensions ® Effective << (O Local for current repository << (O Distributed with current repository << (O Global for all repositories
@ General

s Appearance
--03 Revision links
Build server integration Jira hint plugin enabled

Scripts
) Hotkeys Jira URL |ht‘tps:f}'jira.atlassian.com

|

< Shell extension |
ﬁ Advanced

, Detailed Jira password | |

|

Jira user |

L2 ssH

‘} Git JOL Query |assignee: currentUser() and resolution is EMPTY ORDER BY updatedDate DESC
K i

v i3 Plugins Open the query helper inside Jira

;E% Auto compile SubMedu {AffectsVersions} {Assignee} {Components} {Created} { CustomFields} { Description} {DueDate} {Environment} {FixVersions}
-0 Bitbucket Server Jirafields {HasUserVoted} {ltem} {Jira} {Jiraldentifier} {Key} {Labels} {Parentlssuekey} {Priority} {Project] {Reporter]} {Resolution}
... # Delete obsolete branche {ResolutionDate} {Securitylevel} {Status} {Summary} {Type] {Updated} {Votes}

- Find large files
) GitHub {Key}{Summary}

@ Gource Message Template
-.4p lira Commit Hint

-1 Periodic background fet
L Proxy Switcher
M5 Statistics

oK Cancel Discard Apply

Provides hints for Atlassian Jira issues in the commit form. For example, you can configure Key - Summary message
for all your in progress tasks.

Jira hint plugin enabled
Whether plugin enabled or not.

Jira URL
Link to your Jira server.

Jira user
Your username.

Jira password
Your password.

JOL Query
Query to Jira, results of which you want to show in “Commit Templates” in Com-
mit Form. For more information see: https://confluence.atlassian.com/jiracoreserver()73/

advanced-searching-861257209.html

Jira fields
Key words that you can use in Message Template.

18.2. Third party extensions 111


https://confluence.atlassian.com/jiracoreserver073/advanced-searching-861257209.html
https://confluence.atlassian.com/jiracoreserver073/advanced-searching-861257209.html

Git Extensions Documentation, Release 4.1

Message Template
Result format to insert into message text box after some line from “Commit Templates” selected.

18.2. Third party extensions 112



cHAPTER 19

GitHub

Git Extensions has specific integration with GitHub that adds a GitHub menu item in the main toolbar.

mmands

sxtensionsy,

Tay

Ag

GitHub | Plugins  Tools

Help

View pull requests...
Create pull requests...

Add upstream remote

Fork/Clone repository...

26

his

19.1 Clone Github repository

This option allows you to

1) Fork a repository on GitHub so it is created in your personal space on GitHub.

2) Clone any repositories on your personal space on GitHub so that it becomes a local repository on your machine.

You can see your own personal repositories on GitHub, and also search for repositories using the Search for
repositories tab.

113



Git Extensions Documentation, Release 4.1

| ¥ GitHub: Remote re e - m|
My repositories  Search for repositories
Mame lsfork #Forks Priv.. &
Git.hub Yes 0 Mo
Git.hub Yes 29 Neo
gitextensions Yes 1 MNe
gitextensions Mo 2025  No
GitExtensions. AzureDevOpsCommitMessage  No 1  Ne
gitextensions.extensibility No 4 No If you want to fork a repositery owned
) ) ) ; by somebody else, go to the Search for |
GitExtensions. GerritPlugin Mo g Ne repositories tab.
gitextensions.github.io Yes 0 Ne
gitextensions.github.io No 13 Mo
gitextensicns.pluginmanager Mo 10 Ne
gitextensicns.plugintemnplate Mo 8 Neo
gitextensions.vsix Yes 0 Mo
gitextensions.vsix Mo 10 Ne v
Clone
Destination folder:
|C:\dev\gc | | Browse.., |

Create directony:

Add upstream remote as:

Limit Depth:
0 =

19.2 View pull requests

Cloze

View current pull requests for the active remotes hosted on GitHub, including the diff and comments.

19.2. View pull requests

114



Git Extensions Documentation, Release 4.1

— |
Choose repository: | gitextensions/gitextensions ~
# Heading By Createc ™ Fetch te pr/ branch
10915  Aveid double graph drawing mstv 2023-0¢
10906 Tweak repos dropdown RussKie 2023-0¢ Add remote and fetch
10893  Cl: more meaningful icon instead of displaying a circle prmiossec 2023-0¢ o
< > Close pull request
Diffs Comments
Filter files using a regular expression... @
_,// GitUl/CommandsDialogs/BrowseDialeg/Dashboard Control/UserRepositoriesList.cs ~

/ GitUl/CommandsDialogs/FormBrowse.cs
/ GitUl/CommandsDialogs/FormBrowse.Designer.cs

# GitUl/CommandsDialoas/Menus/TaalStrinMenultemEx.cs v

< >

index f57cc@e?693..c562bdadfe  leascdd "
----a/GitUI/CommandsDialogs/BrowseDialog/DashboardControl/UserRepositorieslist.cs
+++-b/GitUI/CommandsDialogs/BrowseDialog/DashboardControl/UserRepositoriesList. cs
@@--15,7-+15,7-@@-namespace-GitUI.CommandsDialogs.BrowseDialog.DashboardControl

15 15 public-partial class-Userfepositorieslist-:-GitExtensionsControl

16 16 {

17 17 private-readonly TranslationString _groupRecentRepositories = new("Recent repositories™)
| R e private-readonly-TranslationString-_repositorySearchPlaceholder-=-new("Search-repositori

i dpasoaczas private-readonly-TranslationString-_repositorySearchPlaceholder-=-new("Search-repositori

19 19 private-readonly TranslationString: _groupActions = new("Actions™);

2@ 2@ private-readonly TranslationString _deleteCategoryCaption:=-new( v
| < >
19.3 Create pull requests
Create a pull request to an active remote.

Note: Many GitHub repos has templates that should be used when creating PR, if so this form should not be used.
19.3. Create pull requests 115



Git Extensions Documentation, Release 4.1

Target repository: gitextensions/gitextensions bt
Your branch: feature/suppress-VSTHRD110 et
Target branch: rnaster it

Pull request data
Title: ConEmu suppress build warning YSTHRD110

Body: BodyofPR

i Create

19.4 Add upstream remote

Add the repo the current repo was forked from as upstream.

19.5 Settings

See Plugins to configure access.

19.4. Add upstream remote 116



cHAPTER 20

Translations
20.1 Change language
In the settings dialog the language can be chosen.
W Choose language — O et

Choose your language

You can change the language at any time in the settings dialog

N L .
o ™

English Japanese

Spanish

Traditional Chinese Turkish

Russian

Spanish (Argentina)

117



Git Extensions Documentation, Release 4.1

20.2 Translate Git Extensions

More information in the Git Extensions wiki: https://github.com/gitextensions/gitextensions/wiki/Translations

Translations are done on Transifex: https://www.transifex.com/git-extensions/git-extensions/

20.2. Translate Git Extensions 118


https://github.com/gitextensions/gitextensions/wiki/Translations
https://www.transifex.com/git-extensions/git-extensions/

CHAPTER 21

Windows Explorer

The common commands can be started from Windows Explorer using the shell extensions. This option is only avail-
able when Shell Extensions are installed and configured in Shell extension.

119



Git Extensions Documentation, Release 4.1

GitEx Browse
) GitEx Commit
EE Git Extensions b 4L Pull
if Push
t_'" View stash

1t View changes

o Checkout branch
Checkout revision

v Create branch

Open with difftool

o
43 File history
*3  Reset file changes
-+ Addfiles
Apply patch
0} Seftings
If the folder do not have a Git repository, you can clone.

‘[]  GitEx Clone

.;_:;1 GitEx Create new repository

%l Git Extensions b | {0p  Settings

120



CHAPTER 22

Other tools

Git Extensions can be started from Windows Explorer and other tools.

22.1 Visual Studio Code

3rd party extensions are available from the Marketplace pmiossec and ForEvolve.

22.2 Visual Studio

The Visual Studio extension is available from Visual Studio application or Marketplace.

22.2.1 Menu

Most functions can be started from the Extensions / GitExt menu in Visual Studio.

121


https://marketplace.visualstudio.com/items?itemName=pmiossec.vscode-gitextensions
https://marketplace.visualstudio.com/items?itemName=forevolve.git-extensions-for-vs-code
https://marketplace.visualstudio.com/items?itemName=forevolve.git-extensions-for-vs-code

Git Extensions Documentation, Release 4.1

Extensions | Window  Help Search (Ctrl+Q)

5 Manage Extensions H  Clone repository

Customize Menu... Create new repository

=] T — .
Commit

Pull

Push

Stash

Reset File Changes
Manage remotes
Edit .gitignore
Apply patch
Format patch

File history

View changes
Blame

Find file

Checkout branch
Create branch
Merge

Rebase

Solve merge conflicts
Cherry pick

Git bash

Settings

About Git Extensions

22.2.2 Toolbar

A Git Extensions toolbar allows you to perform the most common actions. The buttons can be customized, same
functions as in the menu.

& Commit X & & +__+ gop ;

The current branch name can be shown in the commit button.

22.2. Visual Studio 122



Git Extensions Documentation, Release 4.1

% Settings - Appearance

Settings source: (@ Global for all repositories

v-¥

LY

22.2.3

Git Bxtensions

----- % General

7% Appearance

----- e #) Revision links

" Build server integration
B Scripts
£} Hotkeys

L RN 1 SIS | [ I -

Context menu

General

[] Show relative date instead of full date
Show current branch in Visual Studic

Auto scale user interface when high DPI is used

Truncate long filenames Mone V

Options in the context menu on files and in Solution Explorer:

* Diff changes to the commit index

* View the file history by choosing the ‘File history’ option.

* Reset the file changes to the last committed revision.

Solution

Search Solution Explorer (Ctt 2 -
fad Solution 'GitExtensions' (45 p

Explorer * 01X
Qe-lo-5 "

FormClone.cs

GitUl

%

[EERP
F\ B
(5 RV TR ST

=

= =
[Xu g ]

]

%]

=
[S IV oY

=

I
LA LA LA W W LA LA WA W W B s s s
L

o0

=
Y]

k]

P nuget
[ Externals
B Plugins
[ Solution ltemns
f UnitTests
P V5
b GitCommands
Fi GitExtensions
b J Properties
[ =W References
v1 app.config
pli app.manifest
B AutoCompleteRegexe
P @ Program cc
4 GitbxtU E5  Gitbxt : Diff
b M Pro (5 File history
bo=m R?ﬁ #: Reset File Changes
[ (itl

22.2. Visual Studio

123



CHAPTER 23

Command line

23.1 Git Extensions command line

Most features can be started from the command line. It is recommended to add gitex . cmd to the path when using
from the command line. It is typically stored in the C: \Program Files (x86)\GitExtensions folder.

124



Git Extensions Documentation, Release 4.1

B

Supported commandline arguments for
gitex.crnd / gitex (located in the same folder as GitExtensions.exe):

[path]
browse [path] [-filter=] [--pathFilter= <filepath>]
[-commit=<selectedSha= [, <firstSha=1]
about
add [filename]
addfiles [filename]
apply [filename]
applypatch [filename]
blame filename
branch
checkout
checkoutbranch
checkoutrevision
cherry
cleanup
clone [path]
commit [--quiet] [--rmessage commitmessage]
difftool filenarme
filehistory filename
fileeditor filenarme
formatpatch
gitignore
help (shows this dialog)
init [path]
merge [--branch name]
mergeconflicts [--quiet]
|  mergetocl [--quiet]
openrepo [path] [-filter=]
| pull [--rebase] [--merge] [--fetch] [--quiet] [--remotebranch name]
| push [--quiet]
rebase [--branch name]
remotes
reset
revert filename
| searchfile
settings
stash
synchronize [--rebase] [--rerge] [--fetch] [--quiet]
tag
viewdiff
viewpatch [filename]

23.1. Git Extensions command line 125



Git Extensions Documentation, Release 4.1

MINGWES:f/dev/gc/gitextensions_4 — O >

23.1. Git Extensions command line 126



127



Git Extensions Documentation, Release 4.1

CHAPTER 24

Appendix

24.1 Git Cheat Sheet

Action

Command

Create new repository

$ git init

Create shared repository

$ git init —bare —shared=all

Clone repository

$ git clone c:/demol c:/demo?2

Checkout branch

$ git checkout <name>

Create branch

$ git branch <name>

Delete branch

$ git branch -d <name>

Merge branch (from the branch to merge into):

$ git merge PDC

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool $ git commit

Create tag

$ git tag <name>

Add files/changes (. for all files)

$ git add |

Commit added files/changes (—amend to amend to last
commit)

$ git commit —m “Enter commit message”

Discard changes

$ git reset —hard

Create patch (-M = detect renames —C = detect copies)

$ git format-patch —M —C origin

Apply patch without merging

$ git apply c:/patch/01-emp.patch

Merge patch

$ git am -—3way —-signoff c:/patch/01-emp.patch

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool
3 git am —3way -—resolved

Stash changes

$ git stash

Apply stashed changes

$ git stash apply

Pull changes (add —rebase to rebase instead of merge)

$ git pull c:/demol master

Solve conflicts (add —tool=kdiff3 if no mergetool is
specified)

$ git mergetool

$ git commit

12

i t
Push changes (in branch $ git push c:/demol master
master:<new>)

$ git push c:/demol

Blame

$ git blame —-M —w <filename>

Taln

C At mmvrrrmrand~ ol




Git Extensions Documentation, Release 4.1

Here are some default names used by Git.

Default names

master default branch

origin default upstream repository

HEAD current branch

HEAD* parent of HEAD

HEAD~4 | the great-great grandparent of HEAD

24.1. Git Cheat Sheet

129



	Git Extensions
	Features
	Video tutorials
	Links

	Installation
	Windows installer
	Portable
	Settings

	Dashboard
	Create new repository
	Open repository
	Clone repository
	Clone Github repository

	Browse Repository
	Main toolbar
	Revision graph
	Search
	Quick search in history

	Navigation
	Go to a specific commit

	Filter
	Filter history
	Reflog


	Tabs
	Commit
	Diff
	File tree
	GPG
	Console
	Build report

	Left panel

	Commit
	Commit changes
	Staging changes
	Staging selected lines
	Undoing or resetting changes
	Making the commit

	Amend commit

	Branches
	Create branch
	Orphan branches

	Checkout branch
	Merge branches
	Advanced Merge Options

	Rebase branch
	Interactive rebase
	Squash
	Delete branch

	Tag
	Create tag
	Delete tag

	Remotes
	Manage remote repositories
	Git Credential Manager
	Create SSH key
	PuTTY and github
	OpenSSH and github

	Pull changes
	Push changes

	Submodules
	Manage submodules
	Add submodule

	Worktrees
	Stash
	Revision graph
	Left panel

	Modify Git history
	Cherry pick commit
	Revert commit
	Modify the last commit
	Modify an older commit
	Interactive rebase
	Using autosquash rebase feature
	Edit/reword commit
	Rebase onto

	Merge Conflicts
	Handle merge conflicts


	Patches
	Create patch
	Apply patches

	Notes
	File history
	Commit
	Diff
	View
	Blame

	Maintenance
	Compress Git database
	Recover lost objects
	Fix user names
	Ignore files

	Settings
	Git Extensions
	General
	Appearance
	Sorting
	Colors
	Fonts
	Console style
	Revision Links
	Build server integration
	Scripts
	Hotkeys
	Shell extension
	Advanced
	Confirmations
	Detailed
	Browse repository window
	Commit dialog
	Diff viewer
	Blame viewer
	SSH

	Git
	Paths
	Config
	Advanced

	Plugins

	Plugins
	Bundled
	Auto compile submodules
	Bitbucket Server
	Create local tracking branches
	Delete obsolete branches
	Find large files
	GitHub
	GitFlow
	Gource
	Impact Graph
	Periodic background fetch
	Plugin Manager
	Proxy Switcher
	Release Notes Generator
	Statistics

	Third party extensions
	Gerrit Code Review
	Jira Commit Hint


	GitHub
	Clone Github repository
	View pull requests
	Create pull requests
	Add upstream remote
	Settings

	Translations
	Change language
	Translate Git Extensions

	Windows Explorer
	Other tools
	Visual Studio Code
	Visual Studio
	Menu
	Toolbar
	Context menu


	Command line
	Git Extensions command line

	Appendix
	Git Cheat Sheet


