

    
      
          
            
  
Git Extensions 3.5 Manual



	Git Extensions
	Features

	Video tutorials

	Links





	Getting Started
	Installation

	Portable

	Settings

	Dashboard

	Create new repository

	Open repository

	Clone repository

	Clone Github repository





	Settings
	Git Extensions
	General

	Appearance
	Colors

	Fonts





	Revision Links

	Build server integration

	Scripts

	Hotkeys

	Shell Extension

	Advanced
	Confirmations





	Detailed
	Browse repository window

	Commit dialog

	Diff Viewer





	SSH





	Git
	Paths

	Config

	Advanced





	Plugins





	Browse Repository
	View revision graph

	Search or filter the commit history
	Quick search in history

	Go to a specific commit

	Filter history









	File history
	Commit

	Diff

	View

	Blame





	Commit
	Commit changes
	Staging changes

	Staging selected lines

	Undoing or resetting changes

	Making the commit





	Amend commit





	Stash
	Revision graph





	Tag
	Create tag

	Delete tag





	Branches
	Create branch
	Orphan branches





	Checkout branch

	Merge branches

	Rebase branch

	Interactive rebase

	Delete branch





	Patches
	Create patch

	Apply patches





	Remotes
	Manage remote repositories

	Git Credential Manager

	Create SSH key
	PuTTY and github

	OpenSSH and github





	Pull changes

	Push changes





	Merge Conflicts
	Handle merge conflicts





	Modify Git history
	Cherry pick commit

	Revert commit

	Modify the last commit

	Modify an older commit
	Interactive rebase

	Using autosquash rebase feature

	Edit/reword commit









	Notes

	Submodules
	Manage submodules

	Add submodule





	Worktrees

	Maintenance
	Compress Git database

	Recover lost objects

	Fix user names

	Ignore files





	Translations
	Change language

	Translate Git Extensions





	Windows Explorer

	Visual Studio
	Menu

	Toolbar

	Context menu





	Command line
	Git Extensions command line





	Appendix
	Git Cheat Sheet





	Plugins
	Auto compile SubModules

	Bitbucket Server

	Create local tracking branches

	Delete obsolete branches

	Find large files

	Gerrit Code Review

	GitHub

	GitFlow

	Gource

	Impact Graph

	Jira Commit Hint

	Periodic background fetch

	Proxy Switcher

	Release Notes Generator

	Statistics













          

      

      

    

  

    
      
          
            
  
Git Extensions

Git Extensions is a toolkit aimed at making working with Git under Windows more intuitive.
The shell
extension will integrate in Windows Explorer and presents a context menu on files and directories.
There is also a Visual Studio extension to use Git from the Visual Studio IDE.


Features


	Windows Explorer integration for Git


	Feature rich user interface for Git


	32bit and 64bit support


	Visual Studio extension (2015-2017)




Specific in 2.5x releases:


	Visual Studio (2010 - 2015) add-in


	Runs under Linux or Mac OS X using Mono [http://www.mono-project.com]


	Basic SVN functionality




For description of 2.x specific features, see the 2.x documentation




Video tutorials

There are video tutorials for some basic functions on YouTube (made for older Git Extensions versions).


	Clone [http://www.youtube.com/watch?v=TlZXSkJGKF8]


	Commit changes [http://www.youtube.com/watch?v=B8uvje6X7lo]


	Push changes [http://www.youtube.com/watch?v=JByfXdbVAiE]


	Pull changes [http://www.youtube.com/watch?v=9g8gXPsi5Ko]


	Handle merge conflicts [http://www.youtube.com/watch?v=Kmc39RvuGM8]







Links

See the following links for the Git Extensions download page, source code and documentation.


	Download page: https://sourceforge.net/projects/gitextensions/


	Source Code: https://github.com/gitextensions/gitextensions


	Source Code Issue tracker: https://github.com/gitextensions/gitextensions/issues


	Documentation: https://github.com/gitextensions/GitExtensionsDoc


	Documentation Issue tracker: https://github.com/gitextensions/GitExtensionsDoc/issues


	Wiki: https://github.com/gitextensions/gitextensions/wiki




Please feel free to raise any issues with Git Extensions or its documentation at the appropriate Issue tracker link as shown above.







          

      

      

    

  

    
      
          
            
  
Getting Started


Installation

This section only covers Git Extensions installation, you will need to have Git for Windows installed: https://git-scm.com/download/win

The Git Extensions installer can be found on GitHub [https://github.com/gitextensions/gitextensions/releases/latest].


[image: _images/welcome.png]
Start installation.




[image: _images/scope.png]
Installation scope.




[image: _images/destination.png]
Destination folder.




[image: _images/options.png]
Choose the options to install.




[image: _images/ssh.png]
Choose the SSH client to use. PuTTY is the default because it has better Windows integration, but Pageant must be running.



[image: _images/ready.png]



Portable

Git Extensions is also distributed as a portable .zip file, that only require unpacking. Some features like Windows shell integration and Visual Studio integration is not available with this package.




Settings

Git must be installed prior to starting Git Extensions:

[image: _images/git_missing.png]
First selection is language (depends on the installed languages):

[image: _images/language.png]
All settings will be verified when Git Extensions is started for the first time. If Git Extensions requires
any settings to be changed, the Settings dialog will be shown. All incorrect settings will be marked in red (for instance if the Git version is unsupported) and orange for not recommended setting (like that Git version is older than recommended).
You can ask Git Extensions to try to fix the setting for you by clicking on it.
When installing Git Extensions for the first time,
you will normally be required to configure your username and email address.

The settings dialog can be invoked at any time by selecting Settings from the Tools menu option.

[image: _images/settings.png]
For further information see Settings.




Dashboard

The dashboard contains the most common tasks, recently opened repositories and favourites. Favourite repositories can be added, grouped under Category headings in the right panel.

[image: _images/start_page.png]
Recent Repositories can be moved to favourites using the repository context menu. Choose Categories / Add new to create a new category
and add the repository to it, or you can add the repository to an existing category (e.g. ‘Currents’ as shown below).

[image: _images/move_to_category.png]
To open an existing repository, simply click the link to the repository, or
select Open repository (from where you can select a repository to open from your local file system).

To create a new repository, one of the following options under Common Actions can be selected.




Create new repository

When you do not want to work on an existing project, you can create your own repository using this option.

[image: _images/new_repository.png]
Select a directory where the repository is to be created. You can choose to create a Personal repository or a Central repository.

A personal repository looks the same as a normal working directory but has a directory named .git at the root level
containing the version history. This is the most common repository.

Central repositories only contain the version history. Because a central repository has no working directory you cannot
checkout a revision in a central repository. It is also impossible to merge or pull changes in a central repository. This
repository type can be used as a public repository where developers can push changes to or pull changes from.




Open repository

Opens a Git repo already existing on the file system.

[image: _images/open_repo.png]



Clone repository

You can clone an existing repository using this option.

[image: _images/clone.png]
The repository you want to clone could be on a network share or could be a repository that is accessed through an internet
or intranet connection. Depending on the protocol (http or ssh) you might need to load a SSH key into PuTTY. You also need to specify where
the cloned repository will be created and the initial branch that is checked out. If the cloned repository contains submodules, then these
can be initialised using their default settings if required.

There are two different types of repositories you can create when making a clone. A personal repository contains the complete
history and also contains a working copy of the source tree. A central (bare) repository is used as a public repository where
developers push the changes they want to share with others to. A central repository contains the complete history but does not
have a working directory like personal repositories.




Clone Github repository

This option allows you to


	Fork a repository on GitHub so it is created in your personal space on GitHub.


	Clone any repositories on your personal space on GitHub so that it becomes a local repository on your machine.




You can see your own personal repositories on GitHub, and also search for repositories using the Search for repositories tab.

[image: _images/github_clone.png]






          

      

      

    

  

    
      
          
            
  
Settings

The settings dialog can be invoked at any time by selecting Settings from the Tools menu option.

[image: _images/settings.png]
The following buttons are always available on any page of the Settings dialog. Sometimes the Cancel
button has no effect for the page - this will be noted on the page in the area next to the buttons.







	Button

	Description





	OK

	Save any entered changes made in any settings page and close the Settings dialog.



	Cancel

	Any entered changes in any settings page are not saved. The Settings dialog is closed.



	Apply

	Any entered changes in any settings page are saved.






Settings that are specific to Git Extensions and apply globally will be stored in a file called GitExtensions.settings
either in the user’s application data path or with the program.
The location is dependent on the IsPortable setting in the GitExtensions.exe.config file that is with the program.
Settings that are specific to Git Extensions but apply to only the current repository will be stored in a file of the same
name, GitExtensions.settings, but in either the root folder of the repository or the .git folder of the repository,
depending on whether or not they are distributed with that repository.


Git Extensions

This page is a visual overview of the minimal settings that Git Extensions requires to work properly. Any items highlighted in red should
be configured by clicking on the highlighted item.

This page contains the following settings and buttons.


	
Check settings at startup

	Forces Git Extensions to re-check the minimal set of required settings the next time Git Extensions is started.
If all settings are ‘green’ this will be automatically unchecked.






	
Save and rescan

	Saves any setting changes made and re-checks the settings to see if the minimal requirements are now met.






General



This page contains general settings for Git Extensions.


	
Performance

	
	
Show number of changed files on commit button

	When enabled, the number of pending commits are shown on the toolbar as a figure in parentheses on the Commit button.
Git Extensions must be stopped and restarted to activate changes to this option.
Turn this off if you experience slowdowns.






	
Show number of changed files for artificial commits

	If artificial commits are enabled in the revision graph, show the pending commits as well as a tool tip with a summary of changes.






	
Show current working directory changes as an artificial commit.

	When enabled, two artificial revisions are added to the revision graph.
The first shows the worktree (current working directory) status. The second shows the commit index (staged).






	
Use FileSystemWatcher to check if index is changed

	Monitor if the Git index is changed due to changes outside of Git Extensions, if so show this in the Refresh button in Browse.






	
Show stash count on status bar in browse window

	When you use the stash a lot, it can be useful to show the number of stashed items on the toolbar.
This option causes serious slowdowns in large repositories and is turned off by default.






	
Show submodule status in browse window

	Show the status for submodules (as well as supermodules) in the dropdown menu in Browse. The status is updated if Show number of changed files for artificial commits is enabled and the number of artificial commits is updated. (Changes in supermodules is not monitored).
This option causes serious slowdowns in large repositories and is turned off by default.






	
Check for uncommitted changes in checkout branch dialog

	Git Extensions will not allow you to checkout a branch if you have uncommitted changes on the current branch.
If you select this option, Git Extensions will display a dialog where you can decide
what to do with uncommitted changes before swapping branches.






	
Limit number of commits that will be loaded at start-up

	This number specifies the maximum number of commits that Git Extensions will load when it is started.
These commits are shown in the Revision Graph window. To see more commits,
then this setting will need to be adjusted and Git Extensions restarted.










	
Behaviour

	
	
Close Process dialog when process succeeds

	When a process is finished, close the process dialog automatically.
Leave this option off if you want to see the result of processes.
When a process has failed, the dialog will automatically remain open.






	
Show console window when executing git process

	Git Extensions uses command line tools to access the git repository.
In some environments it might be useful to see the command line dialog when a process is executed.
An option on the command line dialog window displayed allows this setting to be turned off.






	
Use patience diff algorithm

	Use the Git ‘patience diff’ algorithm instead of the default.
This algorithm is useful in situations where two files have diverged significantly and the default algorithm
may become ‘misaligned’, resulting in a totally unusable conflict file.






	
Include untracked files in stash

	If checked, when a stash is performed as a result of any action except a manual stash request,
e.g. checking out a new branch and requesting a stash then any files not tracked by git will also be saved to the stash.






	
Follow renames in file history (experimental)

	Try to follow file renames in the file history.






	
Follow exact renames and copies only

	Follow file renames and copies for which similarity index is 100%. That is when a file
is renamed or copied and is committed with no changes made to its content.






	
Open last working dir on startup

	When starting Git Extensions, open the last used repository (bypassing the Dashboard).






	
Default clone destination

	Git Extensions will pre-fill destination directory input with value of this setting on any form used to perform repository clone.






	
Revision grid quick search timeout [ms]

	The timeout (milliseconds) used for the quick search feature in the revision graph.
The quick search will be enabled when you start typing and the revision graph has the focus.










	
Email settings for sending patches

	
	
SMTP server name

	SMTP server to use for sending patches.






	
Port

	SMTP port number to use.






	
Use SSL/TLS

	Check this box if the SMTP server uses SSL or TLS.










Appearance

This page contains settings that affect the appearance of the application.


	
General

	
	
Show relative date instead of full date

	Show relative date, e.g. 2 weeks ago, instead of full date.
Displayed on the commit tab on the main Revision Graph window.






	
Show current branch in Visual Studio

	Determines whether or not the currently checked out branch is displayed on
the Git Extensions toolbar within Visual Studio.






	
Auto scale user interface when high DPI is used

	Automatically resize controls and their contents according to the current system resolution of the display, measured in dots per inch (DPI).






	
Truncate long filenames

	This setting affects the display of filenames in a component of a window
e.g. in the Diff tab of the Revision Graph window. The options that can be
selected are:


	None - no truncation occurs; a horizontal scroll bar is used to see the whole filename.


	Compact - no horizontal scroll bar. Filenames are truncated at both start and end to fit into the width of the display component.


	Trimstart - no horizontal scroll bar. Filenames are truncated at the start only.


	FileNameOnly - the path is always removed, leaving only the name of the file, even if there is space for the path.









	
Sort by author date

	This setting causes commits to be sorted by author date (rather than commit date) in the revision grid. Sorting by author date may delay rendering of the revision graph.










	
Author images

	
	
Show author's avatar column in the commit graph

	If checked, avatar images are downloaded for commit authors and shown in the revision grid.






	
Show author's avatar in the commit info view

	If checked, avatar images are downloaded for commit authors and shown in the commit info view.






	
Avatar provider

	The avatar provider setting determines the source from which avatar images are requested.


	Default - The default avatar provider loads a user defined avatar images, depending on the email address, from GitHub or Gravatar.
If no user defined image could be found, a fallback images is used.


	None - If selected, no user-defined images are loaded and the fallback is evaluated immediately.


	Custom - An advanced mode that allows you to set one or more custom avatar provider services (e.g. Libravatar) by providing URL
templates.


	URL Template Syntax

	The URL template syntax consists of regular URLs to avatar images, that can be enriched with variables, which are substituted before
evaluation. Those variables are encoded using curly brackets {} and can be used like this: https://example.avatar.service/u/{email}/avatar.png.
If a request fails (http 400 and 500 errors) or does not provide a valid image, the next URL is used. More URLs can be specified by chaining them
together with semicolons (“;”) like so: http://provider1.com/{sha1}.png;http://provider2.com/{sha1}.png. If all custom URLs fail to provide
an avatar image, the applications internal fallback mechanism will provide one for that user.

The variable names are case insensitive. If a variable is not found (for example because of typo or it does not exist), it is substituted
with an empty string, so the resulting URL never contains the curly brackets.

The following variables are currently supported:


	name - The name of the commit author (git config user.name). Special characters are URL encoded.


	email - The email address of the commit author (git config user.email). Special characters are URL encoded.


	md5 - A lowercase hex representation of the MD5 hash of the normalized (all characters lowercase)
email address (without URL encoding). This hash is compatible with Gravatar and thus compatible with a lot of similar services.


	sha1 - Like the md5 variable but with SHA1 as hash algorithm.


	sha256 - Like the md5 variable but with SHA256 as hash algorithm.


	imagesize - Represents the requested avatar size in pixels.




A complete working configuration might look something like this:
https://www.libravatar.org/avatar/{md5}?s={imageSize}&default=404;https://avatar.tobi.sh/{md5}?size={imageSize}














	
Fallback generated avatar style

	The configured fallback determines how authors without a user-defined avatar are presented. Besides Author Initials all other options are
provided by Gravatar. Details about their fallback modes can be found here https://en.gravatar.com/site/implement/images/ in the section “Default Image”.
Author Initials are generated by the application internally and require no network connection to be displayed.






	
Cache images (days)

	The number of days to elapse before the avatar image source is checked for any changes to an authors image.






	
Clear image cache

	Clear the cached avatars.










	
Language

	
	
Language (restart required)

	Choose the language for the Git Extensions interface.






	
Dictionary for spelling checker

	Choose the dictionary to use for the spelling checker in the Commit dialog.










Colors

This page contains settings to define the colors used in the application.


	
Revision graph

	
	
Multicolor branches

	Displays branch commits in different colors if checked.
If unchecked, all branches are shown in the same color.
This color can be selected.






	
Draw alternate background

	Alternate background colour for revision rows.






	
Draw non relatives graph gray

	Show commit history in gray for branches not related to the current branch.






	
Draw non relatives text gray

	Show commit text in gray for branches not related to the current branch.






	
Highlight authored revisions

	Highlight revisions committed by the same author as the selected revision.






	
Color authored revisions

	Color to highlight authored revisions.






	
Color tag

	Color to show tags in.






	
Color branch

	Color to show branch names in.






	
Color remote branch

	Color to show remote branch names in.






	
Color other label

	Color to show other labels in.










	
Difference View

	
	
Color removed line

	Highlight color for lines that have been removed.






	
Color added line

	Highlight color for lines that have been added.






	
Color removed line highlighting

	Highlight color for characters that have been removed in lines.






	
Color added line highlighting

	Highlight color for characters that have been added in lines.






	
Color section

	Highlight color for a section.












Fonts


	
Fonts

	
	
Code font

	The font used for the display of file contents.






	
Application font

	The font used on Git Extensions windows and dialogs.






	
Commit font

	The font used for entering a commit message in the Commit dialog.






	
Monospace font

	The font used for the commit id in the revision graph.














Revision Links

You can configure here how to convert parts of a revision data into clickable links. These links will be located under the commit message on the Commit
tab in the Related links section.

[image: _images/related_links_location.png]
The most common case is to convert an issue number given as a part of commit message into a link to the coresponding issue-tracker page.
The screenshot below shows an example configuration for GitHub issues.

You could add this quite generic
GitExtensions.settings <https://github.com/gitextensions/GitExtensionsDoc/blob/master/source/files/settings/GitExtensions.settings>
file to the root of your repository.

[image: _images/revision_links.png]

	
Categories

	



Lists all the currently defined Categories. Click the Add button to
add a new empty Category. The default name is ‘new’.  To remove a Category
select it and click the Remove button.


	
Name

	



This is the Category name used to match the same categories defined on
different levels of the Settings.




	
Enabled

	Indicates whether the Category is enabled or not. Disabled categories are
skipped while creating links.






	
Remote data

	It is possible to use data from remote’s URL to build a link. This way, links can be defined globally for all repositories sharing the same URL schema.


	
Use remotes

	Regex to filter which remotes to use. Leave blank to create links not depending on remotes.
If full names of remotes are given then matching remotes are sorted by its position in the given Regex.






	
Only use the first match

	Check if you want to create links only for the first matching remote.






	
Search in

	Define whether to search in URL, Push URL or both.










	
Revision data

	
	
Search in

	Define which parts of the revision should be searched for matches.


	id

	search-pattern










	
Search pattern

	Regular expression used for matching text in the chosen revision parts.
Each matched fragment will be used to create a new link. More than one
fragment can be used in a single link by using a capturing group.
Matches from the Remote data group go before matches from the Revision data group.
A capturing group value can be passed to a link by using zero-based indexed
placeholders in a link format definition e.g. {0}.






	
Nested pattern

	Nested pattern can be used when only a part of the text matched by the Search pattern
should be used to format a link. When the Nested pattern is empty,
matches found by the Search pattern are used to create links.






	
Links: Caption/URI

	List of links to be created from a single match. Each link consists of
the Caption to be displayed and the URI to be opened when the link
is clicked on. In addition to the standard zero-based indexed placeholders,
the %COMMIT_HASH% placeholder can be used to put the commit’s hash into
the link. For example: https://github.com/gitextensions/gitextensions/commit/%COMMIT_HASH%










Build server integration

This page allows you to configure the integration with build servers. This allows the build status of each commit
to be displayed directly in the revision log, as well as providing a tab for direct access to the Build Server
build report for the selected commit.


	
Enable build server integration

	Check to globally enable/disable the integration functionality.






	
Build server type

	Select an integration target.






	
AppVeyor

	
	
Account name

	AppVeyor account name. You don’t have to enter it if the projects you want to query for build status are public.






	
API token

	AppVeyor API token. Requiered if the Account name is entered.
See https://ci.appveyor.com/api-token






	
Project(s) name(s)

	Projects names separated with ‘|’, e.g. gitextensions/gitextensions|jbialobr/gitextensions






	
Display tests results in build status summary for every build result

	Include tests results in the build status summary for every build result.










	
Azure DevOps and Team Foundation Server (since TFS2015)

	
	
Project URL

	Enter the URL of the server (and port, if applicable).






	
Build definition name

	Limit the builds if desired.






	
Rest API token

	Read token for the build server.










	
Jenkins

	
	
Jenkins server URL

	Enter the URL of the server (and port, if applicable).






	
Project name

	Enter the name of the project which tracks this repository in Jenkins. Separate project names with “|”. Multi-branch pipeline projects are supported by adding “?m” to the project name.






	
Ignore build for branch

	The plugin will normally display the last build for a certain commit. If Jenkins starts several builds for one commit, it is possible to ignore the non interesting builds if all builds are not interesting.










	
TeamCity

	
	
TeamCity server URL

	Enter the URL of the server (and port, if applicable).






	
Project name

	Enter the name of the project which tracks this repository in TeamCity. Multiple project names can be entered separated by the | character.






	
Build Id Filter

	Enter a regexp filter for which build results you want to retrieve in the case that your build project creates multiple builds. For example, if your project includes both devBuild and docBuild you may wish to apply a filter of “devBuild” to retrieve the results from only the program build.










	
Team Foundation Server

	For TFS prior to 2015.


	
Tfs server (Name or URL)

	Enter the URL of the server (and port, if applicable).






	
Team collection name

	




	
Project name

	Enter the name of the project which tracks this repository in Tfs.






	
Build definition name

	Use first found if left empty.












Scripts

This page allows you to configure specific commands to run before/after Git actions or to add a new command to the User Menu.
The top half of the page summarises all of the scripts currently defined. If a script is selected from the summary, the bottom
half of the page will allow modifications to the script definition.

A hotkey can also be assigned to execute a specific script. See Hotkeys.


	
Add

	Adds a new script. Complete the details in the bottom half of the screen.






	
Remove

	Removes a script.






	
Up/Down Arrows

	Changes order of scripts.






	
Name

	The name of the script.


	
Enabled

	If checked, the script is active and will be performed at the appropriate time (as determined by the On Event setting).






	
Ask for confirmation

	If checked, then a popup window is displayed just before the script is run to confirm whether or not the script is to be run.
Note that this popup is not displayed when the script is added as a command to the User Menu (On Event setting is ShowInUserMenuBar).






	
Run in background

	If checked, the script will run in the background and Git Extensions will return to your control without waiting for the script to finish.






	
Add to revision grid context menu

	If checked, the script is added to the context menu that is displayed when right-clicking on a line in the Revision Graph page.






	
Is PowerShell

	If checked, the command is started through a powershell.exe process.
If the Run in background is checked, the powershell console is closed after finishing. If not,
the powershell console is left for the user to close it manually.










	
Command

	Enter the command to be run. This can be any command that your system can run e.g. an executable program,
a .bat script, a Python command, etc. Use the Browse button to find the command to run.

There are some special prefixes which change the way the script is executed:


	plugin:<plugin-name>: Where <plugin-name> is the name of a plugin (refer Plugins).
If a plugin with that name is found, it is run.


	navigateTo:<script-path>: Where <script-path> is the path to a file containing the script to run.
That script is expected to return a commit hash as the first line of its output. The UI will navigate to that commit once the script completes.









	
Arguments

	Enter any arguments to be passed to the command that is run.
The Help button displays items that will be resolved by Git Extensions before
executing the command e.g. {cBranch} will resolve to the currently checked out branch,
{UserInput} will display a popup where you can enter data to be passed to the command when it is run.






	
On Event

	Select when this command will be executed, either before/after certain Git commands, or displayed on the User Menu bar.
Since the git pull command includes a fetch, before/after fetch events are triggered on pure fetches as well as on pulls. For the pull command the script execution order ist BeforePull - BeforeFetch - git pull - AfterFetch - AfterPull.


	
Icon

	Select an icon to be displayed in a menu item when the script is marked to be shown in the user menu bar.












Hotkeys

This page allows you to define keyboard shortcuts to actions when specific pages of Git Extensions are displayed.
The HotKeyable Items identifies a page within Git Extensions. Selecting a Hotkeyable Item displays the list of
commands on that page that can have a hotkey associated with them.

The Hotkeyable Items consist of the following pages


	Commit: the page displayed when a Commit is requested via the Commit User Menu button or the Commands/Commit menu option.


	Browse: the Revision Graph page (the page displayed after a repository is selected from the dashboard (Start Page)).


	RevisionGrid: the list of commits in Browse and other forms.


	FileViewer: the page displayed when viewing the contents of a file.


	FormMergeConflicts: the page displayed when merge conflicts are detected that need correcting.


	BrowseDiff: Diff tab in Browse.


	RevisionFileTree: The FileTree tab in Browse.


	Scripts: shows scripts defined in Git Extensions and allows shortcuts to be assigned. Refer Scripts.





	
Hotkey

	After selecting a Hotkeyable Item and the Command, the current keyboard shortcut associated with the command is displayed here.
To alter this shortcut, click in the box where the current hotkey is shown and press the new keyboard combination.


	
Apply

	Click to apply the new keyboard combination to the currently selected Command.






	
Clear

	Sets the keyboard shortcut for the currently selected Command to ‘None’.










	
Reset all Hotkeys to defaults

	Resets all keyboard shortcuts to the defaults (i.e. the values when Git Extensions was first installed).








Shell Extension

When installed, Git Extensions adds items to the context menu when a file/folder is right-clicked within Windows Explorer. One of these items
is Git Extensions from which a further (cascaded) menu can be opened. This settings page determines which items will appear on that cascaded
menu and which will appear in the main context menu. Items that are checked will appear in the cascaded menu.

To the right side of the list of check boxes is a preview that shows you how the Git Extensions menu items will be arranged with
your current choices.

By default, what is displayed in the context menu also depends on what item is right-clicked in Windows Explorer; a file or a folder
(and whether the folder is a Git repository or not). If you want Git Extensions to always include all of its context menu items,
check the box Always show all commands.




Advanced

This page allows advanced settings to be modified.
Refer Confirmations.


	
Checkout

	
	
Always show checkout dialog

	Always show the Checkout Branch dialog when swapping branches.
This dialog is normally only shown when uncommitted changes exist on the current branch






	
Use last chosen "local changes" action as default action.

	This setting works in conjunction with the ‘Git Extensions/Check for uncommitted changes in checkout branch dialog’ setting.
If the ‘Check for uncommitted changes’ setting is checked, then the Checkout Branch dialog is shown only if this setting is unchecked.
If this setting is checked, then no dialog is shown and the last chosen action is used.










	
General

	
	
Don’t show help images

	In the Pull, Merge and Rebase dialogs, images are displayed by default to explain what happens
with the branches and their commits and the meaning of LOCAL, BASE and REMOTE (for resolving merge conflicts)
in different merge or rebase scenarios. If checked, these Help images will not be displayed.






	
Always show advanced options

	In the Push, Merge and Rebase dialogs, advanced options are hidden by default and shown only after you click a link or checkbox.
If this setting is checked then these options are always shown on those dialogs.






	
Use Console Emulator for console output in command dialogs

	Using Console Emulator for console output in command dialogs may be useful the running
command requires an user input, e.g. push, pull using ssh, confirming gc.






	
Auto normalise branch name

	Controls whether branch name should be automatically normalised as per git branch
naming rules. If enabled, any illegal symbols will be replaced with the replacement symbol of your choice.










	
Commit

	
	
Push forced with lease when Commit & Push action is performed with Amend option checked

	In the Commit dialog, users can commit and push changes with one click. However, if changes are meant to amend
an already pushed commit, a standard push action will be rejected by the remote server. If this option is
enabled, a push action with --force-with-lease switch will be performed instead. The --force-with-lease
switch will be added only when the Amend option is checked.










	
Updates

	
	
Check for updates weekly

	Check for newer version every week.






	
Check for release candidate versions

	Include release candidate versions when checking for a newer version.










Confirmations

This page allows you to turn off certain confirmation popup windows.


	
Don’t ask to confirm to

	
	
Amend last commit

	If checked, do not display the popup warning about
the rewriting of history when you have elected to amend the last committed change.






	
Commit when no branch is currently checked out

	When committing changes and there is no branch currently being checked out, then
GitExtensions warns you and proposes to checkout or create a branch. Enable this
option to continue working with no warning.






	
Apply stashed changes after successful pull

	In the Pull dialog, if Auto stash is checked, then any changes will be stashed before the pull is performed.
Any stashed changes are then re-applied after the pull is complete.
If this setting is checked, the stashed changes are applied with no confirmation popup.






	
Apply stashed changes after successful checkout

	In the Checkout Branch dialog, if Stash is checked, then any changes will be stashed before the branch is checked out.
If this setting is checked, then the stashed changes will be automatically re-applied
after successful checkout of the branch with no confirmation popup.






	
Drop stash

	Popup when dropping a stash.






	
Add a tracking reference for newly pushed branch

	When you push a local branch to a remote and it doesn’t have a tracking reference,
you are asked to confirm whether you want to add such a reference. If this setting is checked,
a tracking reference will always be added if it does not exist.






	
Push a new branch for the remote

	When pushing a new branch that does not exist on the remote repository,
a confirmation popup will normally be displayed. If this setting is checked,
then the new branch will be pushed with no confirmation popup.






	
Update submodules on checkout

	When you check out a branch from a repository that has submodules,
you will be asked to update the submodules. If this setting is checked,
the submodules will be updated without asking.






	
Resolve conflicts

	If enabled, then when conflicts are detected GitExtensions will start the Resolve conflicts dialog
automatically without any prompt.






	
Commit changes after conflicts have been resolved

	Enable this option to start the Commit dialog automatically after all conflicts have been resolved.






	
Confirm for the second time to abort a merge

	When aborting a merge, rebase or other operation that caused conflicts to be resolved,
an user is warned about the consequences of aborting and asked if he/she wants to continue.
If the user chooses to continue the aborting operation, then he/she is asked for the second time
if he/she is sure that he/she wants to abort. Enable this option to skip this second confirmation.






	
Rebase on top of selected commit

	Rebase context menu command popup in revision graph.






	
Undo last commit

	Browse Command popup.






	
Fetch and prune all

	Browse fetch/prune popup.






	
Switch Worktree

	Switch worktree popup.














Detailed

This page allows detailed settings to be modified.


	
Push window

	
	
Get remote branches directly from the remote

	Git caches locally remote data. This data is updated each time a fetch operation is performed.
For a better performance GitExtensions uses the locally cached remote data to fill out controls
on the Push dialog. Enable this option if you want GitExtensions to use remote data recieved
directly from the remote server.










	
Merge window

	
	
Add log messages

	If enabled, then in addition to branch names, git will populate the log message with one-line descriptions
from at most the given number actual commits that are being merged.
See https://git-scm.com/docs/git-merge#Documentation/git-merge.txt—logltngt [https://git-scm.com/docs/git-merge#Documentation/git-merge.txt---logltngt]










Browse repository window


	
Console emulator

	
	
Show the Console tab

	Show the Console tab in the Browse Repository window.


	
Console style

	Choose one of the predefined ConEmu schemes. See http://conemu.github.io/en/SettingsColors.html.






	
Shell to run

	Choose one of the predefined terminals.






	
Font size

	Console font size.










	
Show GPG information

	Show tab for GPG information if available.












Commit dialog

This page contains settings for the Git Extensions Commit dialog. Note that the dialog itself has further options.


	
Behaviour

	
	
Provide auto-completion in commit dialog

	Enables auto-completion in commit dialog message box. Auto-completion words
are taken from the changed files shown by the commit dialog. For each file type
there can be configured a regular expression that decides which words should be
considered as candidates for auto-completion. The default regular expressions included
with Git Extensions can be found here: https://github.com/gitextensions/gitextensions/blob/master/GitExtensions/AutoCompleteRegexes.txt
You can override the default regular expressions by creating an AutoCompleteRegexes.txt file in
the Git Extensions installation directory.






	
Show errors when staging files

	If an error occurs when files are staged (in the Commit dialog),
then the process dialog showing the results of the git command is shown if this setting is checked.






	
Ensure the second line of commit message is empty

	Enforces the second line of a commit message to be blank.






	
Compose commit messages in Commit dialog

	If this is unchecked, then commit messages cannot be entered in the commit dialog.
When the Commit button is clicked, a new editor window is opened where the commit message can be entered.






	
Number of previous messages in commit dialog

	The number of commit messages, from the top of the current branch,
that will be made available from the Commit message combo box on the Commit dialog.






	
Remember 'Amend commit' checkbox on commit form close

	Remembers the state of the ‘Amend commit’ checkbox when the ‘Commit dialog’ is being closed.
The remembered state will be restored on the next ‘Commit dialog’ creation.
The ‘Amend commit’ checkbox is being unchecked after each commit.
So, when the ‘Commit dialog’ is being closed automatically after commiting changes,
the ‘Amend commit’ checkbox is going to be unchecked first and its state will be saved after that.
Therefore the checked state is remembered only if the ‘Commit dialog’ is being closed
by an user without commiting changes.






	
Show additional buttons in commit button area

	Tick the boxes in this sub-group for any of the additional buttons that you wish
to have available below the commit button. These buttons are considered additional
to basic functionality and have consequences if you should click them accidentally,
including resetting unrecorded work.












Diff Viewer


	
Remember the 'Ignore whitespaces' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Ignore whitespaces’ preference.
Use the remembered value the next time GitExtensions is opened.






	
Remember the 'Show nonprinting characters' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Show nonprinting characters’ preference.
Use the remembered value the next time GitExtensions is opened.






	
Remember the 'Show entire file' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Show entire file’ preference.
Use the remembered value the next time GitExtensions is opened.






	
Remember the 'Number of context lines' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Number of context lines’ preference.
Use the remembered value the next time GitExtensions is opened.






	
Omit uninteresting changes from combined diff

	Includes git –cc switch when generating a diff. See https://git-scm.com/docs/git-diff-tree#Documentation/git-diff-tree.txt—cc [https://git-scm.com/docs/git-diff-tree#Documentation/git-diff-tree.txt---cc]






	
Open Submodule Diff in separate window

	If enabled then double clicking on a submodule in the Diff file list opens a new instance of
GitExtensions with the submodule as the selected repository. If disabled, the File history
window is opened for the double clicked submodule.






	
Show file differences for all parents in browse dialog

	Enable this option to see diff against each of the revision parents, combined diff including.






	
Vertical ruler position

	Position for ruler in TextEditor controls. Set to 0 to disable.
(This should be moved to the TextEditor context menu.)










SSH



This page allows you to configure the SSH client you want Git to use. Git Extensions is optimized for PuTTY. Git Extensions
will show command line dialogs if you do not use PuTTY and user input is required (unless you have configured SSH to use authentication
with key instead of password). Git Extensions can load SSH keys for PuTTY when needed.


	
Specify which ssh client to use

	
	
PuTTY

	Use PuTTY as SSH client.






	
OpenSSH

	Use OpenSSH as SSH client.






	
Other ssh client

	Use another SSH client. Enter the path to the SSH client you wish to use.










	
Configure PuTTY

	
	
Path to plink.exe

	Enter the path to the plink.exe executable.






	
Path to puttygen

	Enter the path to the puttygen.exe executable.






	
Path to pageant

	Enter the path to the pageant.exe executable.






	
Automatically start authentication

	If an SSH key has been configured, then when accessing a remote repository the key will automatically be used by the SSH client if this is checked.












Git

The settings that are used by Git are stored in the configuration files of Git. The global settings are stored in the file called
.gitconfig in the user directory. The local settings are stored in the .git\config file of the repository.


Paths

This page contains the settings needed to access git repositories. The repositories will be accessed using external
tools. For Windows usually “Git for Windows” is used. Git Extensions will try to configure these settings automatically.


	
Git

	
	
Command used to run git (git.cmd or git.exe)

	Needed for Git Extensions to run Git commands. Set the full command used
to run git (“Git for Windows”). Use the Browse button to
find the executable on your file system. (Cygwin Git may work but is not officially supported.)






	
Path to Linux tools (sh).

	A few Linux tools are used by Git Extensions. When Git for Windows is
installed, these tools are located in the bin directory of Git for
Windows. Use the Browse button to find the directory on your file
system. Leave empty when it is in the path.










	
Environment

	
	
Change HOME

	This button opens a dialog where the HOME directory can be changed.

The global configuration file used by git will be put in the HOME directory. On some systems the home directory is not set
or is pointed to a network drive. Git Extensions will try to detect the optimal setting for your environment. When there is
already a global git configuration file, this location will be used. If you need to relocate the home directory for git,
click the Change HOME button to change this setting. Otherwise leave this setting as the default.












Config

This page contains some of the settings of Git that are used by and therefore can be changed from within Git Extensions.

If you change a Git setting from the Git command line using git config then the same change in setting can be seen inside
Git Extensions. If you change a Git setting from inside Git Extensions then that change can be seen using git config --get.

Git configuration can be global or local configuration. Global configuration applies to all repositories. Local configuration overrides
the global configuration for the current repository.


	
User name

	User name shown in commits and patches.






	
User email

	User email shown in commits and patches.






	
Editor

	Editor that git.exe opens (e.g. for editing commit message).
This is not used by Git Extensions, only when you call git.exe from the command line.
By default Git will use the built in editor.






	
Mergetool

	Merge tool used to solve merge conflicts. Git Extensions will search for common merge tools on your system.






	
Path to mergetool

	Path to merge tool. Git Extensions will search for common merge tools on your system.






	
Mergetool command

	Command that Git uses to start the merge tool. Git Extensions will try to set this automatically when a merge tool is chosen.
This setting can be left empty when Git supports the mergetool (e.g. kdiff3).






	
Keep backup (.orig) after merge

	Check to save the state of the original file before modifying to solve merge conflicts. Refer to Git configuration setting `mergetool.keepBackup`.






	
Difftool

	Diff tool that is used to show differences between source files. Git Extensions will search for common diff tools on your system.






	
Path to difftool

	The path to the diff tool. Git Extensions will search for common diff tools on your system.






	
DiffTool command

	Command that Git uses to start the diff tool. This setting should only be filled in when Git doesn’t support the diff tool.








	
Path to commit template

	A path to a file whose contents are used to pre-populate the commit message in the commit dialog.






	
Line endings

	
	
Checkout/commit radio buttons

	Choose how git should handle line endings when checking out and checking in files.
Refer to https://help.github.com/articles/dealing-with-line-endings/#platform-all










	
Files content encoding

	The default encoding for files content.






Advanced



Various settings for Git.




Plugins

Plugins provide extra functionality for Git Extensions. Please refer to Plugins.







          

      

      

    

  

    
      
          
            
  
Browse Repository

You can browse a repository by starting Git Extensions and select the repository to open. The main window contains
the revision graph (commit log). You could also open the ‘Browse’ window from the shell extensions and from Visual Studio.


View revision graph

The full commit history can be browsed. There is a graph that shows branches and merges. You can show the difference
between any two revisions by selecting them using ctrl-click.

[image: _images/commit_diff_view.png]
The context menu for a commit can both execute Git commands and change the appearance for the form.

[image: _images/commit_contextual_menu.png]



Search or filter the commit history

You can find text in the commit messages or jump to a specific commit in the current commit history shown in Git
Extensions. You can also filter the commit history so that fewer commits are shown.


Quick search in history

You can find a commit in the commit history that is shown in Git Extensions by searching for text in the commit message,
branch label or tag. This is a quick search function. Simply click into the commit history to give that pane focus and
start typing. Git Extensions will show your search term in the top left corner and will immediately jump to the next
commit with matching text. You can search for the next or previous commit with matching text using Alt-Down Arrow or
Alt-Up Arrow.

In Settings, Git Extensions you can change the timeout for typing the text for the quick search.




Go to a specific commit

You can jump to a particular commit in the commit history if you know the SHA, tag or branch. In fact you can use any
expression valid for git-rev-parse. Select Navigate, Go to commit or press Ctrl-Shift-G to open the Go
to commit window. Enter an SHA or other term to be passed to git-rev-parse into the box at the top and click Go,
or select a branch or tag from one of the two combo boxes below.




Filter history

The history can be filtered using regular expressions and basic filter terms. Filtering will reduce the number of commits
that are shown in the Git Extensions commit history. The quick filter in the toolbar filters by the commit message, the
author and/or the committer.

[image: _images/quick_filter.png]
In the context menu of the commit log you can open the advanced filter dialog. The advanced filter dialog allows you to
filter for more specific commits. To remove the filter either remove the filter in the toolbar and press enter or remove the
filter in the advanced filter dialog.

[image: _images/advance_filter_dialog-menu.png]
[image: _images/advance_filter_dialog.png]








          

      

      

    

  

    
      
          
            
  
File history

To display the single file history, right click on a file name in the Browse Repository File tree or in the Diff tab and select File history or Blame.
The single file history viewer shows all revisions of a single file. (This is available for submodules too, but the information is mostly not interesting.)

[image: _images/context_menu_blame.png]

Commit

The Commit tab contains the information about the commit, including the other files in the commit.

[image: _images/file_history_commit.png]



Diff

You can view the difference report from the commit in the Diff tab.


Note

Added lines are marked with a +, removed lines are marked with a –.



[image: _images/file_history_diff.png]



View

You can view the content of the file in after each commit in the View tab.

[image: _images/file_history_view.png]



Blame

There is a blame function in the file history browser. The commit for the selected line is displayed.

[image: _images/file_history_blame.png]
Double clicking on a code line shows the full commit introducing the change.







          

      

      

    

  

    
      
          
            
  
Commit

A commit is a set of changes with some extra information. Every commit contains the following information:


	Changes


	Committer name and email


	Commit date


	Commit message


	Cryptographically strong SHA1 hash




Each commit creates a new revision of the source. Revisions are not tracked per file; each change creates a new
revision of the complete source. Unlike most traditional source control management systems, revisions are not named
using a revision number. Each revision is named using a SHA1, a 41 long characters cryptographically strong hash.


Commit changes

Changes can be committed to the local repository. Unlike centralised source control management systems you do not need to
checkout files before you start editing. You can just start editing files, and review all the changes you made in the commit
dialog later. When you open the commit dialog, all changes are listed in the top-left.

[image: _images/commit_dialog.png]
There are three kinds of changes:







	Untracked

	This file is not yet tracked by Git. This is probably a new file, or a file that has not been committed to Git
before.



	Modified

	This file is modified since the last commit.



	Deleted

	This file has been deleted.






When you rename or move a file Git will notice that this file has been moved and notice in index pane (not in working directory).

During your initial commit there are probably lots of files you do not want to be tracked. You can ignore these files by not
staging them, but they will show every time. You can instead add them to the .gitignore file of your repository. Files that are
in the .gitignore file will not show up in the commit dialog again. You can open the .gitignore editor from the menu
Working dir changes by selecting Edit ignored files.

[image: _images/commit_menu_edit_ignored.png]
Making a commit is a two step procedure:


	Adding to index (staging) the changes to be committed, which saves a snapshot of the changes into the Git “index”.


	Committing those staged changes, which records the staged changes and other information into the repository.




You do not have to commit immediately after staging changes. You can close the commit dialog, make further changes to the
files in the working dir, then re-open the commit dialog to stage further changes and commit. Changes that you have staged
previously will still be staged when you re-open the dialog.


Staging changes

The changes that you have made to your working directory are not automatically included in a commit. You must choose
which of the changed files, or individual changes from within those files, will be included in the commit by “staging” the
changes in Git Extensions. Staging changes in Git Extensions is the same as using git add on the Git command line.

You can stage the changes you want to commit by selecting the files in the top-left or “Unstaged changes” pane and pressing
the Stage button or pressing the [S] key. The file entries will move to the lower left or “Staged changes” pane. You
need to stage deleted files because you stage the change and not the file. If you have staged changes from a file and you
wish to exclude those changes from the commit, select the entry in the staged changes pane and press the Unstage
button or press the [U] key.

If the file that is selected in either the unstaged or staged changes pane is text format, Git Extensions will show a
Git “diff” view in the right side pane of the window.




Staging selected lines

You do not have to commit all of the changes in a text format file in one commit. You can select and stage individual lines
from within a file such that only the chosen lines will be included in your next commit; the remaining changes in the file
will appear as unstaged changes for the next commit.

In the diff view on the right, select the line or lines that you want to stage then right-click and choose Stage selected
line(s) or press the [S] key. The file will now appear in both the staged changes and unstaged changes panes on the left
since now there are both staged and unstaged changes in the same file. The change that was selected will disappear from the
diff view on the right because the diff view is showing only the unstaged changes.

To see the line changes that have been staged select the entry for the file in the staged changes pane. To unstage selected
changed lines from a file, select that file in the staged changes pane, then select the line or lines in the diff view, right
-click, and choose Unstage selected line(s) or press the [U] key.


Note

If you select an entire line including the end-of-line character then staging or unstaging that line will include
both the selected line and the next line. To select a single line to stage or unstage you may simply click onto the line
without selecting any particular characters.




Note

Staging and unstaging individual lines from a file does not change the file itself. It is simply choosing which
changes from within that file will be included in the next commit.






Undoing or resetting changes

You can undo or reset changes to files from the commit dialog. You can only do this from the top-left or “Unstaged changes”
pane. If you have already staged the changes then you must first unstage them as described above. To reset the changes in a
file, select the file in the unstaged changes pane, right-click and choose Reset file or directory changes or press the
[R] key.

[image: _images/commit_reset_changes.png]
You can reset individual changed lines in a similar way to staging and unstaging individual lines, which are described above.
To reset an individual line, select the line or lines in the diff view on the right then right-click and choose Reset
selected lines or press the [R] key.


Warning

Resetting changes modifies the file, discarding either all of the changes or the changes on the selected lines.






Making the commit

When all the changes you want to commit are staged, enter a commit message into the lower-right pane and press the commit button.

[image: _images/commit_dialog_commit.png]
There is a built-in spelling checker that checks the commit message. Incorrectly spelled words are underlined with a wavey red line.
Right-click on the misspelled word to choose the correct spelling or choose one of the other options.

Git Extensions installs a number of dictionaries by default. You can choose another language in the context menu of the
spelling checker or in the settings dialog. To add a new spelling dictionary add the dictionary file to the Dictionaries
folder inside the Git Extensions installation folder.

[image: _images/commit_dialog_spellchecker.png]





Amend commit

It is also possible to add changes to your last commit by checking the Amend Commit checkbox. This can be very useful when you
forgot some changes. This function rewrites history; it deletes the last commit and commits it again including the added
changes.

See also Modify Git history, especially if you have published the changes to a repote repository already.







          

      

      

    

  

    
      
          
            
  
Stash

If there are local changes that you do not want to commit yet and not want to throw away either, you can temporarily stash
them. This is useful when working on a feature and you need to start working on something else for a few hours. You can
stash changes away and then reapply them to your working dir again later. Stashes are typically used for very short periods.

[image: _images/stash_dialog.png]

Revision graph

You can create multiple stashes if needed. The latest stash is shown in the commit log with the text [stash], all stashes if reflog is visible (see Maintenance).

[image: _images/commit_log_stash.png]
The stash is especially useful when pulling remote changes into a dirty working directory. If you want a more permanent
stash, you should create a branch.







          

      

      

    

  

    
      
          
            
  
Tag

Tags are used to mark a specific version. Usually a tag will not be moved anymore. The image below shows
the commit log of Git Extensions with a tag indicating version [3.00.00].

[image: _images/tag.png]

Create tag

In Git Extensions you can tag a revision by choosing Create new tag in the commit log context menu. A dialog
will prompt for the name of the tag. You can also choose Create tag from the Commands menu, which will show
a dialog to choose the revision and enter the tag name.

[image: _images/new_tag.png]
Once a tag is created, it cannot be moved again. You need to delete the tag and create it again to move it.




Delete tag

Tags can be deleted, read about “What should you do when you tag a wrong commit and you would want to re-tag?” here:
https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

[image: _images/delete_tag.png]






          

      

      

    

  

    
      
          
            
  
Branches

[image: _images/branch.png]
Branches are used to commit changes separate from other commits. It is very common to create a new branch when you
start working on a feature to keep the work done on that feature separate from other work. When the feature is
complete the branch can be merged or rebased as you choose such that the commits for the feature either remain as a
parallel branch or appear as a continuous single line of development as if the branch had never existed in the first
place. The image on the right illustrates a branch created on top of commit B.

You can see the name of your current branch in a combo box in the toolbar. You can switch to another branch by
choosing from the combo box list. In the commit log the current branch has an arrow head to the left of its name. If
you are not currently on a branch because you have checked out a specific commit but not any particular branch then
Git Extensions will show (no branch) in place of a branch name in the toolbar. This is called “Detached HEAD
mode”. In Git you can refer to your current branch or commit by the special reference HEAD in place of the
branch name or commit reference.

[image: _images/branch_toolbar.png]

Create branch

In Git Extensions there are multiple ways to create a new branch. In the image below I create a new branch from the
context menu in the commit log. This will create a new branch on the revision that is selected.

[image: _images/new_branch.png]
I will create a new branch called feature/refactor. In this branch I can do whatever I want without affecting others.
The default in Git Extensions is to check out a new branch after it is created. If you want to create a new branch
but remain on your current branch, uncheck the Checkout after create checkbox in the Create branch dialog.

[image: _images/create_branch_dialog.png]
When the branch is created you will see the new branch feature/refactor in the commit log. If you chose to checkout this
branch the next commit will be committed to the new branch.

[image: _images/refactor_branch.png]
Creating branches in Git requires only 41 bytes of space in the repository. Creating a new branch is very easy and
fast. The complete work flow of Git is optimized for branching and merging.


Orphan branches

In special cases it is helpful to have orphan branches (see for example https://www.google.com/search?q=why+use+orphan+branches+in+git).
Check the “Create orphan” checkbox to create an orphan branch (--orphan option in git).

The newly created branch will have no parent commits.

The option “Clear working dir and index” (git rm -rf) is active by default. So the working dir and index will be cleared.
If you uncheck the last option then the working dir and index will not be touched.






Checkout branch

You can switch from the current branch to another branch using the checkout command. Checking out a branch sets the current
branch and updates all of the source files in the working directory. Uncommitted changes in the working directory can be
overwritten so it is best practice to make sure your working directory is clean by either committing or stashing any current
changes before checking out a branch. If you do not clean your working directory then, in the Checkout branch dialog, you
can choose between four options for your local uncommitted changes:







	Don't change

	Local changes will be retained if there are not conflicting changes from the branch you are checking out.



	Merge

	Performs a three-way merge between your current branch, your local changes and the branch you are checking out.



	Stash

	Your local changes are stashed and the new branch is checked out. You can retrieve your changes on the new branch with stash-pop.



	Reset

	Your local changes are discarded and the new branch is checked out. Use caution with this option as Git has no record of uncommitted changes so they cannot be retrieved.






[image: _images/checkout_branch.png]



Merge branches

In the image below there are two branches, [feature/refactor] and [master]. We can merge the commits from the master branch
into the feature/refactor branch. If we do this, the feature/refactor branch will be up to date with the master branch, but not the other way around.
As long as we are working on the feature/refactor branch we cannot touch the master branch itself. We can merge the sources of
master into our branch, but cannot make any change to the master branch.

[image: _images/merge1.png]
To merge the feature/refactor branch into the master branch, we first need to switch to the master branch.

[image: _images/merge2.png]
Once we are on the master branch, select the feature/refactor branch and select merge. Alternatively choose Merge branches from the Commands menu and select the feature/refactor branch.

[image: _images/merge_context_menu.png]
In the merge dialog you can verify which branch you are working on. Select the branch to merge with then click the Merge button.

[image: _images/merge_dialog.png]
After the merge the commit log will show the new commit containing the merge. Notice that the feature/refactor branch is not changed
by this merge. If you want to continue working on the feature/refactor branch you can merge the feature/refactor branch with master. You can
instead delete the feature/refactor branch if it is not used anymore.

[image: _images/merge3.png]

Note

When you need to merge with an unnamed branch you can use a tag to give it a temporary name.




Note

During a merge conflicts can occur. See Merge Conflicts for more information.






Rebase branch

The rebase command is the most complex command in Git. The rebase command is very similar to the merge command. Both rebase
and merge are used to get a branch up-to-date. The main difference is that rebase can be used to keep the history linear
contrary to merges.

[image: _images/rebase1.png]
Select the commit where you want to to rebase the current branch.

[image: _images/merge_context_menu.png]
A rebase of feature/refactor on top of master will perform the following actions:


	All commits specific to the feature/refactor branch will be stashed in a temporary location


	The branch feature/refactor will be removed


	The branch feature/refactor will be recreated on the master branch


	All commits will be recommitted in the new feature/refactor branch





Note

During a rebase merge conflicts can occur. You need to solve the merge conflicts for each commit that is rebased. The
rebase function in Git Extensions will guide you through all steps needed for a successful rebase. See Merge Conflicts for more information.



[image: _images/rebase_dialog.png]
The image below shows the commit log after the rebase. Notice that the history is changed and it seems like the commits on
the feature/refactor branch are created after the commits on the master branch.

[image: _images/rebase2.png]

Warning

Because this function rewrites history you should only use this on branches that are not published to other repositories
yet. When you rebase a branch that is already pushed it will be harder to pull or push to that remote. If you want to get
a branch up-to-date that is already published you should merge.






Interactive rebase

It is possible to modify the order, merge commits etc when committing.

See Modify Git history for more information.




Delete branch

Since it is common to create many branches, it is often necessary to delete branches. Most commonly you will need to delete
branches on which work has finished and their contents are merged into master or your main branch. You can also delete
unmerged branches when they are not needed anymore and you do not want to keep the work done in that branch.

When you delete a branch that is not yet merged, all of the commits that are in only the deleted branch will be lost.
When you delete a branch that is already merged with another branch, the merged commits will not be lost because they are
also part of another branch.

You can delete a branch using Delete branch from the Commands menu. If you want to delete a branch that is not merged into
your current branch (HEAD in Git), you need to check the Force delete checkbox.

[image: _images/delete_branch.png]






          

      

      

    

  

    
      
          
            
  
Patches

Every commit contains a change-set, a commit date, the committer name, the commit message and a cryptograph SHA1
hash. Local commits can be published by pushing it to a remote repository. To be able to push you need to have sufficient
rights and you need to have access to the remote repository. When you cannot push directly you can create patches.
Patches can be e-mailed to someone with access to the repository. Each patch contains an entire commit including the commit
message and the SHA1.

[image: _images/patche.png]

Create patch

Format a single patch or patch series using the format patch dialog. You need to select the newest commit first and then
select the oldest commit using ctrl-click. You can also select an interrupted patch series, but this is not recommended
because the files will not be numbered.

[image: _images/patche_dialog.png]
When the patches are created successfully the following dialog will appear.

[image: _images/patche_dialog_result.png]



Apply patches

It is possible to apply a single patch file or all patches in a directory. When there are merge conflicts applying the patch
you need to resolve them before you can continue. Git Extensions will help you applying all patches by marking the next
recommended step.

Use ‘Sign-Off’ checkbox to sign off commits of applying patch. Git Extensions will remember your choice.

[image: _images/apply_patche.png]






          

      

      

    

  

    
      
          
            
  
Remotes

Git is a distributed source control management system. This means that all changes you make are local. When you commit
changes, you only commit them to your local repository. To publish your local changes you need to push. In order to get
changes committed by others, you need to fetch/pull.


Manage remote repositories

You can manage the remote repositories in the Remotes menu.

[image: _images/manage_remote_repositories.png]
When you cloned your repository from a public repository, this remote is already configured. You can rename each remote for
easy recognition. The default name after cloning a remote is origin. If you use PuTTY as SSH client you can also enter the
private key file for each remote. Git Extensions will load the key when needed. How to create a private key file is described
in the next paragraph.

[image: _images/remote_repositories.png]
In the Default pull behaviour tab you can configure the branches that need to be pulled and merged by default. If you
configure this correctly you will not need to choose a branch when you pull or push. There are two buttons on this dialog:







	Prune remote branches

	Throw away remote branches that do not exist on the remote anymore.



	Update all remote branch info

	Fetch all remote branch information.






[image: _images/remote_repositories2.png]
After cloning a repository you do not need to configure all remote branches manually. Instead you can checkout the remote
branch and choose to create a local tracking branch.




Git Credential Manager

The Git Credential Manager can be used to authenticate http links. For more information and instructions, see https://github.com/Microsoft/Git-Credential-Manager-for-Windows




Create SSH key

Git uses SSH for accessing private repositories. SSH uses a public/private key pair for authentication. This means you need
to generate a private key and a public key. The private key is stored on your computer locally and the public key can be given
to anyone. SSH will encrypt whatever you send using your secret private key. The receiver will then use the public key you send
to decrypt the data.

This encryption will not protect the data itself but it protects the authenticity. Because the private key is only available to
the sender, the receiver can be sure about the origin of the data. In practise the key pair is only used for the authentication
process. The data itself will be encrypted using a key that is exchanged during this initial phase.


PuTTY and github

PuTTY is SSH client that for Windows that is a bit more user friendly then OpenSSH. Unfortunately PuTTY does not work with
all servers. In this paragraph I will show how to generate a key for github using putty.

First make sure GitExtensions is configured to use PuTTY and all paths are correct, see SSH

[image: _images/putty_generate_or_import_key.png]
can choose Generate or import key to start the key generator.







	[image: _images/putty_key_generator1.png]

	[image: _images/putty_key_generator2.png]






PuTTY will ask you to move the mouse around to generate a more random key. When the key is generated you can save the public and
the private key in a file. You can choose to protect the private key with a password but this is not necessary.

Now you have a key pair you need to give github the public key. This can be done in Account Settings in the tab
SSH Public Keys. You can add multiple keys here, but you only need one key for all repositories.

[image: _images/github_account_settings.png]
After telling github what public key to use to decrypt, you need to tell GitExtensions what private key to use to encrypt.
Load the private key into the PuTTY authentication agent in Clone dialoge or by starting the PuTTY authentication agent and choose add key in the context menu in the system tray.

GitExtensions can load the private keys automatically for you when communicating with a remote. You need to configure the
private key for the remote.

This is done in the Manage remote repositories dialog.




OpenSSH and github

To configure GitExtensions to use OpenSSH, see SSH.

OpenSSH is the best SSH client there is but it lacks Windows support. Therefore it is slightly more complex to use.
Another drawback is that GitExtensions cannot control OpenSSH and needs to show the command line dialogs when OpenSSH might
be used. GitExtensions will show the command line window for every command that might require a SSH connection. For this
reason PuTTY is the preferred SSH client in GitExtensions.

To generate a key pair in OpenSSH you need to go to the command line. I recommend to use the git bash because the path to
OpenSSH is already set. Open the separate Git bash or the console tab.

[image: _images/git_bash_toolbar.png]
Type the following command: ssh-keygen -C "your@email.com" -t rsa
Use the same email address as the email address used in git. You will be asked where if you want to protect the private
key with a password. This is not necessary. By default the public and private keys are stored in
c:\Documents and Settings\[User]\.ssh\ or c:\Users\[user]\.ssh\.

[image: _images/ssh_bash.png]
You do not need to tell GitExtensions about the private key because OpenSSH will load it for you. Now open the public
key using notepad and copy the key to github. This can be done in Account Settings in the tab SSH Public Keys
on GitHub [http://www.github.com].






Pull changes

You can get remote changes using the pull function. Before you can pull remote changes you need to make sure there are no
uncommitted changes in your local repository. If you have uncommitted changes you should commit them or stash them during the
pull. You can read about how to use the stash in the Stash chapter.

[image: _images/pull_toolbar.png]
In order to get your personal repository up-to-date, you need to fetch changes from a remote repository. You can do this using
the Pull dialog. When the dialog starts the default remote for the current branch is set. You can choose another remote
or enter a custom url if you like. When the remote branches configured correctly, you do not need to choose a remote branch.

If you just fetch the commits from the remote repository and you already committed some changes to your local repository, the
commits will be in a different branch. In the pull dialog this is illustrated in the image on the left. This can be useful when
you want to review the changes before you want to merge them with your own changes.

[image: _images/pull_dialog_fetch.png]
When you choose to merge the remote branch after fetching the changes a branch will be created, and will be merged into
your commit. Doing this creates a lot of branches and merges, making the history harder to read.

[image: _images/pull_dialog_merge.png]
Instead of merging the fetched commits with your local commits, you can also choose to rebase your commits on top of the
fetched commits. This is illustrated on the left in the image below. A rebase will first undo your local commits (c and d),
then fetch the remote commits (e) and finally recommit your local commits. When there is a merge conflict during the rebase,
the rebase dialog will show.

[image: _images/pull_dialog_rebase.png]
Next to the pull button there are some buttons that can be useful:







	Solve conflicts

	When there are merge conflicts, you can solve them by pressing this button.



	Stash changes

	When the working dir contains uncommitted changes, you need to stash them before pulling.



	Auto stash

	Check this checkbox if you want to stash before pulling. The stash will be reapplied after pulling.



	Load SSH key

	This button is only available when you use PuTTY as SSH client. You can press this button to load the
key configured for the remote. If no key is set, a dialog will prompt for the key.









Push changes

In the browse window you can check if there are local commits that are not pushed to a remote repository yet. In the image
below the green labels mark the position of the master branch on the remote repository. The red label marks the position of
the master branch on the local repository. The local repository is ahead three commits.

[image: _images/push1.png]
To push the changes press Push in the toolbar.

[image: _images/push_toolbar.png]
The push dialog allows you to choose the remote repository to push to. The remote repository is set to the remote of the
current branch. You can choose another remote or choose a url to push to. You can also specify a branch to push.

[image: _images/push_dialog.png]
Tags are not pushed to the remote repository. If you want to push a tag you need to open the Tags tab in the dialog. You
can choose to push a singe tag or all tags. No commits will be pushed when the Tags tab is selected, only tags.

You can not merge your changes in the remote repository. Merging must be done locally. This means that you cannot push your
changes before the commits are merged locally. In practice you need to pull before you can push most of the times.







          

      

      

    

  

    
      
          
            
  
Merge Conflicts

When merging or rebasing branches or commits you can get conflicts. Git will try to resolve these, but some conflicts
need to be resolved manually. Git Extensions will show warnings when there is a merge conflict in the status bar in the bottom right corner.

[image: _images/merge_conflicts.png]

Handle merge conflicts

To solve merge conflicts just click on a warning or open the Solve merge conflicts... dialog from the Commands menu. A dialog will prompt
showing all conflicts.

[image: _images/resolve_merge_conflicts.png]
The context menu shows the actions to resolve the conflicts. Double-click on a filename will start the mergetool.

[image: _images/resolve_merge_conflicts_menu.png]
There are three kinds of conflicts:







	File deleted and changed

	Use modified or deleted file?



	File deleted and created

	Use created or deleted file?



	File changed both locally and remotely

	Start merge tool.






If the file is deleted in one commit and changed in another commit, a dialog will ask to keep the modified file or delete
the file. When there is a conflicting change the merge tool will be started. You can configure the tool you want to use for
merge conflicts. The image below shows Perforce P4Merge, a merge tool free to use for small teams.

In the merge tool you will see four versions of the same file:







	Base

	The latest version of the file that exist in both repositories



	Local

	The latest local version of the file



	Remote

	The latest remote version of the file



	Merged

	The result of the merge







Caution

When you are in the middle of a merge the file named local represents your file. When you are in the middle of a rebase the
file named remote represents your file. This can be confusing, so double check if you are in doubt.



[image: _images/perforce_p4merge.png]






          

      

      

    

  

    
      
          
            
  
Modify Git history

A Git commit cannot be changed, the sha for the commit will replaced at all changes. However, the contents of a commit can be modified and committed again as a new commit with a new sha and the branch/tag can be moved to the modified (new) commit.


	A commit can be reverted, the changes of a certain commit can be reverted and added as a new commit. Similar, a commit can be applied again (possibly to a new branch), known as cherry picking.


	The commit can be added again (and all commits that are children to the commit) as new commits and git branches can be made to point to the new commit instead.




There are 2 different cases, and consequently 2 ways to do it with git when we want to modify the history:


	Modify the last commit of the current branch with doing an amend


	Modify an older commit with doing an interactive rebase




Note: There are 2 things to understand when working with the history with git:


	As git only creates immutable commits (sealed by the sha1), “modifying” a commit is in fact creating a new more or less similar commit.


	Consequently, the entire history of children following the changed commit will be different.




So, except if the history has not been already pushed, or if you have good reasons, it is a bad practice to change the history
because you will mess the history of other developers.


Cherry pick commit

A commit can be recommitted by using the cherry pick function. This can be very useful when you want to make the same change
on multiple branches. Select the commit (or range of commits) you want to cheery pick:

[image: _images/cherry_pick_context_menu.png]
The confirm dialog opens:

[image: _images/cherry_pick.png]



Revert commit

A commit cannot be deleted once it is published. If you need to undo the changes made in a commit, you need to create a new
commit that undoes the changes. This is called a revert commit.
A revert commit is similar to a cherry pick, but the cherry pick tries to apply the same changes as the original commit, a revert will try to reverse the changes.

[image: _images/revert_commit_context_menu.png]
The confirm dialog opens:

[image: _images/revert_commit_dialog.png]



Modify the last commit

The easiest way to modify the last commit is to do an amend commit.
To do that, open the commit windows and check the option “Amend commit”.
If the commit message text area was empty, it is now filled with the message of the last commit.
You could now just update the commit message and commit or also add some more changes in the staging area to
add them to the commit.

[image: _images/amend_commit.png]



Modify an older commit

It normally makes sense just to change the history for the current branch. To change the parents of the current branch you will have to make a rebase. Git Extensions has functionality that wraps the Git rebase commands and simplifies usage in some situations.


Interactive rebase

First, you should create a commit containing the changes you want to add to a previous commit
(or know an existing commit that contains this changes).

Then use the rebase feature in interactive mode on a base commit older than the one that you want to modify.
See Branches for how to start a rebase, start an interactive rebase from the context menu or by selecting the checkbox in the rebase dialog.

[image: _images/rebase_dialog.png]
You will be prompted by a text editor displaying all the commits that will be rebased

[image: _images/rebase_interactive.png]
You could have a look to this _documentation: https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History to better understand all the possibilities offered.

The options offered are :


	reorder the lines to reorder the commits,


	delete a line to throw away a commit and the changes introduced by the commit,


	write r or reword in front of a commit to rewrite the commit message,


	write f or fixup in front of a commit to meld the commit with the previous commit and with keeping the commit message of the first commit,


	write s or squash in front of a commit to meld the commit with the previous commit and with rewriting the commit message.




Often, we will use interactive rebase to move the line and squash or fixup commits to modify the history.

Once we did the changes, save and close the editor to let git do the rebase.




Using autosquash rebase feature

There is an option to facilitate the use of the interactive rebase when you know, at the moment of doing a
commit that the changes introduced by this commit should have been made in an older commit (the case of a fixup or squash).

In this case, you should create a commit containing the changes you want to add to a previous commit and use the Advanced menu to:


	create a fixup commit


	create a squash commit




Right click on the commit in the history, you know that you want to “modify”.

And choose the suitable option…

[image: _images/rebase_interactive_fixup_commit.png]
If you have not the changes prior to open the dialog, do them now.

GitExtensions will open the commit window with an already filled commit message containing the needed information to find the commit to “modify”.
Do not change the commit message and commit all the changes needed.

Then process to the interactive rebase, like describe in the previous paragraph but with enabling the option Autosquash.

[image: _images/rebase_interactive_autosquash.png]
Launch the rebase by clicking on Rebase.

The interactive rebase will process the same way but with a major difference!
When enabling the Autosquash option, git will automatically reorder the commits lines and write the good actions in front of the commits
when it will open the text editor. You normally have just to close the editor (except if you want to do additional changes).
And let git do the rebase.




Edit/reword commit

These options are the same as starting an interactive rebase on the parent to the selected commit and doing an edit (allow to amend to the commit) or reword (editing the commit message) and then run an interactive rebase in the background.

Note especially that this functionality will fail if you try to edit/reword a commit that is not a parent to the current checkout.









          

      

      

    

  

    
      
          
            
  
Notes

Notes can be added to a commit. Notes will be stored separately and will not be pushed. To add a new note
choose add notes in the context menu of the commit information box.

[image: _images/add_note_context_menu.png]
The editor that has been configured in the settings dialog will be used to enter or edit the notes. The Git
Extensions editor is advised.

[image: _images/note_editor.png]




          

      

      

    

  

    
      
          
            
  
Submodules

Large projects can be split into smaller parts using submodules. A submodule contains the name, url and revision of
another repository. To create a submodule in an existing git repository you need to add a link to another repository
containing the files of the submodule.

[image: _images/submodules.png]

Manage submodules

The current state of the submodules can be viewed with the Manage submodules function. All submodules are shown in
the list on the left.

[image: _images/submodules_dialog.png]






	Add submodule

	Add a new submodule to the repository



	Synchronize

	Synchronizes the remote URL configuration setting to the value specified in .gitmodules for the selected
submodule.



	Initialize

	Initialize the selected submodules, i.e. register each submodule name and url found in .gitmodules into
.git/config. The submodule will also be updated.



	Update

	Update the registered submodules, i.e. clone missing submodules and checkout the commit specified in the index
of the containing repository.



	Remove

	Remove the submodule from the repository









Add submodule

To add a new submodule choose Add submodule in the Manage submodules dialog.

[image: _images/add_submodules.png]






	Path to submodule

	Path to the remote repository to use as submodule.



	Local path

	Local path to this submodule, relative to the root of the current repository.



	Branch

	Branch to track.












          

      

      

    

  

    
      
          
            
  
Worktrees

Git Extensions support Git worktrees: Multiple checked out working directories can share local branches.
For more information see the Git documentation: https://git-scm.com/docs/git-worktree

[image: _images/worktree_context_menu.png]




          

      

      

    

  

    
      
          
            
  
Maintenance

In this chapter some of the functions to maintain a repository are discussed.


Compress Git database

Git will create a lot of files. You can run the Compress git database to pack all small files building up a repository
into one big file. Git will also garbage collect all unused objects that are older then 15 days. When a database is fragmented
into a many small files compressing the database can increase performance.

[image: _images/compress_database.png]



Recover lost objects

Normally Git will not delete files right away when you remove something from your repository. The reason for this is that you
can restore deleted items if you need to. Git will delete removed items when they are older then 15 days and you run Compress
git database.

Commits without branches or tags can be shown with Git reflog https://git-scm.com/docs/git-reflog
The easiest way to view the commits is to show Git reflog in the revision graph:

[image: _images/reflog_show.png]
The reflog commits are listed as gray:

[image: _images/reflog_revision.png]
GE also supports the previous way to show you all dangling objects and will allow you to review and recover them. If you accidentally deleted a commit you can try to recover it using the Recover lost objects function.

[image: _images/recover_objects.png]
[image: _images/verify_database.png]
Git Extensions also is able to tag all lost objects. Doing this will make all lost objects visible again making it very easy
to locate the commit(s) you would like to recover.




Fix user names

When someone accidentally committed using a wrong username this can be fixed using the Edit .mailmap function. Git will use
the username for an email address when it is set in the .mailmap file.

[image: _images/mail_map.png]
For more information, see https://git-scm.com/docs/git-check-mailmap.




Ignore files

Git will track all files that are in the working directory. Normally you do not want to exclude all files that are created
by the compiler. You can add files that should be ignored to the .gitignore file. You can use wildcards and regular expressions.
All entries are case sensitive. The button Add default ignores will add files that should be ignored when using Visual Studio.

[image: _images/gitignore.png]
A short overview of the syntax:







	#

	Lines started with # are handled as comments



	!

	Lines started with ! are exclude patterns



	[Dd]

	Characters inside [..] means that 1 of the characters must match



	*

	Wildcard



	/

	A leading slash matches the beginning of the pathname; for example, /*.c matches cat-file.c but not
mozilla-sha1/sha1.c



	/

	If the pattern ends with a slash, it is removed for the purpose of the following description, but it would only find a
match with a directory. In other words, foo/ will match a directory foo and paths underneath it, but will not match a
regular file or a symbolic link foo (this is consistent with the way how pathspec works in general in git).






For more detailed information [https://git-scm.com/docs/gitignore].







          

      

      

    

  

    
      
          
            
  
Translations


Change language

In the settings dialog the language can be chosen.

[image: _images/language.png]



Translate Git Extensions

More information in the Git Extensions wiki:
https://github.com/gitextensions/gitextensions/wiki/Translations

Translations are done on Transifex: https://www.transifex.com/git-extensions/git-extensions/







          

      

      

    

  

    
      
          
            
  
Windows Explorer

The common commands can be started from Windows Explorer using the shell extensions. This option is only available
when Shell Extensions are installed.

[image: _images/explorer_integration.png]
If the folder do not have a Git repository, you can clone.

[image: _images/explorer_integration_new.png]




          

      

      

    

  

    
      
          
            
  
Visual Studio


Menu

Almost all function can be started from the GitExt menu in Visual Studio.

[image: _images/git_menu.png]



Toolbar

A Git Extensions toolbar allows you to perform the most common actions.
The buttons can be customized, same functions as in the menu.

[image: _images/toolbar.png]
The current branch name can be shown in the commit button.

[image: _images/setting_branch.png]



Context menu

Options in the context menu on files and in Solution Explorer:


	Diff changes to the commit index


	View the file history by choosing the ‘File history’ option.


	Reset the file changes to the last committed revision.




[image: _images/context_menu.png]






          

      

      

    

  

    
      
          
            
  
Command line


Git Extensions command line

Most features can be started from the command line. It is recommended to add gitex.cmd to the path
when using from the command line. It is typically stored in the C:\Program Files (x86)\GitExtensions folder.


[image: _images/command_line_usage.png]



[image: _images/command_line.png]








          

      

      

    

  

    
      
          
            
  
Appendix


Git Cheat Sheet







	Action

	Command





	Create new repository

	$ git init



	Create shared repository

	$ git init –-bare –-shared=all



	Clone repository

	$ git clone c:/demo1 c:/demo2



	Checkout branch

	$ git checkout <name>



	Create branch

	$ git branch <name>



	Delete branch

	$ git branch -d <name>



	Merge branch (from the branch to merge into):

	$ git merge PDC



	Solve conflicts (add –tool=kdiff3 if no mergetool is specified)

	$ git mergetool
$ git commit



	Create tag

	$ git tag <name>



	Add files/changes (. for all files)

	$ git add .



	Commit added files/changes (–amend to amend to last commit)

	$ git commit –m “Enter commit message”



	Discard changes

	$ git reset –hard



	Create patch (-M = detect renames –C = detect copies)

	$ git format-patch –M –C origin



	Apply patch without merging

	$ git apply c:/patch/01-emp.patch



	Merge patch

	$ git am -–3way –-signoff c:/patch/01-emp.patch



	Solve conflicts (add –tool=kdiff3 if no mergetool is specified)

	
$ git mergetool

$ git am –-3way -–resolved






	Stash changes

	$ git stash



	Apply stashed changes

	$ git stash apply



	Pull changes (add –rebase to rebase instead of merge)

	$ git pull c:/demo1 master



	Solve conflicts (add –tool=kdiff3 if no mergetool is specified)

	
$ git mergetool

$ git commit






	Push changes (in branch $ git push c:/demo1 master master:<new>)

	$ git push c:/demo1



	Blame

	$ git blame –M –w <filename>



	Help

	$ git <command> –help






Here are some default names used by Git.







	Default names





	master

	default branch



	origin

	default upstream repository



	HEAD

	current branch



	HEAD^

	parent of HEAD



	HEAD~4

	the great-great grandparent of HEAD












          

      

      

    

  

    
      
          
            
  
Plugins

Git Extensions has a possibility to add functionality in external plugins. Some are distributed with the main program.

Most plugins has settings in Settings. Most plugins also have UI forms accessible from the main menu in Browse Repository.

This list is incomplete.


Auto compile SubModules

This plugin proposes (confirmation required) that you automatically build submodules after they are updated via the GitExtensions Update submodules command.


	
Enabled

	Enter true to enable the plugin, or false to disable.






	
Path to msbuild.exe

	Enter the path to the msbuild.exe executable.






	
msbuild.exe arguments

	Enter any arguments to msbuild.








Bitbucket Server

For repositories is hosted on Atlassian Bitbucket Server, the plugin cannot be used for bitbucket.org.
For more information see: https://www.atlassian.com/software/bitbucket/server

This plugin will enable you to view and create pull requests for Bitbucket.


	
Bitbucket Username

	The username required to access Bitbucket.






	
Bitbucket Password

	The password required to access Bitbucket.






	
Specify the base URL to Bitbucket

	The URL from which you will access Bitbucket.






	
Disable SSL verification

	Check this option if you do not require SSL verification to access Bitbucket Server.








Create local tracking branches

This plugin will create local tracking branches for all branches on a remote repository.
The remote repository is specified when the plugin is run.




Delete obsolete branches

This plugin allows you to delete obsolete branches i.e. those branches
that are fully merged to another branch.
It will display a list of obsolete branches for review before deletion.


	
Delete obsolete branches older than (days)

	Select branches created greater than the specified number of days ago.






	
Branch where all branches should be merged

	The name of the branch where a branch must have been merged into to be considered obsolete.








Find large files

Finds large files in the repository and allows you to delete them.


	
Find large files bigger than (Mb)

	Specify what size is considered a ‘large’ file.








Gerrit Code Review

The Gerrit plugin provides integration with Gerrit for GitExtensions.
This plugin has been based on the git-review tool.

For more information see: https://www.gerritcodereview.com/




GitHub

This plugin will create an OAuth token so that some common GitHub actions can be integrated with Git Extensions.

For more information see: https://github.com/


	
OAuth Token

	The token generated and retrieved from GitHub.








GitFlow



This plugin permit to manage your _branching model: http://nvie.com/posts/a-successful-git-branching-model/ with _GitFlow: https://github.com/nvie/gitflow in GitExtension

You should have GitFlow installed to use this plugin.

The GitFlow plugin permit to :
- init gitflow in your git repository
- create your feature, hotfix, release or support branch
- manage (pull, publish or finish) your existing gitflow branches


Gource

Gource is a software version control visualization tool.

For more information see: http://gource.io/


	
Path to "gource"

	Enter the path to the gource software.






	
Arguments

	Enter any arguments to gource.








Impact Graph

This plugin shows in a graphical format the number of commits and counts of changed
lines in the repository performed by each person who has committed a change.




Jira Commit Hint

[image: _images/jira_commit_hint.png]


Provides hints for Atlassian Jira issues in the commit form.
For example, you can configure Key - Summary message for all your in progress tasks.



	
Jira hint plugin enabled

	Whether plugin enabled or not.






	
Jira URL

	Link to your Jira server.






	
Jira user

	Your username.






	
Jira password

	Your password.






	
JQL Query

	Query to Jira, results of which you want to show in “Commit Templates” in Commit Form. For more information see: https://confluence.atlassian.com/jiracoreserver073/advanced-searching-861257209.html






	
Jira fields

	Key words that you can use in Message Template.






	
Message Template

	Result format to insert into message text box after some line from “Commit Templates” selected.









Periodic background fetch

This plugin keeps your remote tracking branches up-to-date automatically by fetching periodically.


	
Arguments of git command to run

	Enter the git command and its arguments into the edit box.
The default command is fetch --all, which will fetch all branches from all remotes.
You can modify the command if you would prefer, for example, to fetch only a specific remote, e.g. fetch upstream.






	
Fetch every (seconds)

	Enter the number of seconds to wait between each fetch. Enter 0 to disable this plugin.






	
Refresh view after fetch

	If checked, the commit log and branch labels will be refreshed after the fetch.
If you are browsing the commit log and comparing revisions you may wish
to disable the refresh to avoid unexpected changes to the commit log.






	
Fetch all submodules

	If checked, also perform git fetch --all recursively on all configured
submodules as part of the periodic background fetch.








Proxy Switcher

This plugin can set/unset the value for the http.proxy git config file key as per the settings entered here.


	
Username

	The user name needed to access the proxy.






	
Password

	The password attached to the username.






	
HttpProxy

	Proxy Server URL.






	
HttpProxyPort

	Proxy Server port number.








Release Notes Generator

This plugin will generate ‘release notes’.
This involves summarising all commits between the specified from and to commit expressions
when the plugin is started. This output can be copied to the clipboard in various formats.




Statistics

This plugin provides various statistics (and a pie chart) about the current Git repository.
For example, number of commits by author, lines of code per language.


	
Code files

	Specifies extensions of files that are considered code files.






	
Directories to ignore (EndsWith)

	Ignore these directories when calculating statistics.






	
Ignore submodules

	Ignore submodules when calculating statistics (true/false).











          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/putty_key_generator2.png
1P PUTTY Key Generator
Fie Key Conversions Help

Key
Pubic key for pasting nto OpenSSH authorized_keys fie:

shisa ~
|AAAABNzaC yc2EARAABIQAAAQEANR B Bg Ty WRS +g35s Unv20Ki 3 TAWZIRFO
Jo+m@ten

+5TBKaVWICyCe0zQSHKKNKGbURSKyws6WBm 3bvdlceytkamYreaYQXaiBoh5us.
12630 APkexlsrhwof NHUOEZBX2EbP27vBHmBrn Us X35 v

Keyngepent; [shsa 20006 8376113 6m A TobSbhcmca 803

Keyconmert:  [pakey20101210

[Ar—

Corfm pasptase: |

Actons

Generate a publc/prvate key pair Generate
Load an exising private keyfie. Load
Save the generated key Savepublickey | | Save prvate key

Parameters

Type of key to generste:
@RsA Opsa OFEcpsa QD519 OSSH1 RSA)

Nt s gt






_images/quick_filter.png
X gitextensions_4 (release/3.00) - Git Extensions - o X
Start Repository Navigate View Commands GitHub Plugins Tools Help

|1/ = | B2+ Fdengagitatensions 4 + release300 +| 6+ § ) Commit(s) G3@D +| L @ [ Benches | | ¥-[ A [T |7- 0

e[| ghesersions/master Updste FEAOME md [ 10070 Tasaise @3000044. A
Branches (111) Working directory
v B relesse

Commit index

¥ 200
P gotest I ) release/3.00 | > gitetensions/release/3.00 R R IR e
b 25t
5 2 Merge pullrequest #5860 from spdre70/feature/guardensurescore o (@ Russkie 2181207110518 #3decsB @ 3000044

3 spdraT0 ==

S b gtetensions @ Commit ©2 Diff %5 Fileee J° GPG M Console %) BuildReport

5 feature - 41FF —-git a/GItU/GItUL.csproj b/GItUL/GtUI.csproj

5P bugfic T index b63fazabe. . f51F32c2d 100644

b 5663 cxceptio g pulequest . - a/GItUI/GItU.csproj

/" GitUI/GitUl.csproj “+++ b/GItUT/GitUT.csproj

./ GitUl/Resources/Changelog.md
“one Include="Properties\Datasources\GitCommands . GitIten. datasource™ />
<tone Include="Properties\Datasources\GitCommands  GitItenStatus. datasource” />
<tione Include="Properties\Datasources\GitConmands GitRevision. datasource”™ />

local
7 b 171 <lone Include="Resources\ChangeLog.md" />
5+ tmp <None Include="Translation\Czech.Plugins.x1f">

& master <CopyToOutputDirectory>Preserveliewest</CopyToOutputbirectory>

3 1 amaiorano </tone>






_images/putty_generate_or_import_key.png
¥ GitExtensionsDoc (feature/i5693-doc-3.00) - Git Extensions
Start Repository Navigate View Commands Github  Plugins

i | L= +| 3~ Fadenge\gitertensions 4\GitextensionsDoc ~ fex

Commit(®) UM v| 1 &

Search: feature/uirefresh _gofeature/ui-refresh
-2

PuTTY.

B Stortouthentication agent

Git commandlog  F12

Settings

ctrl+,

(2 Generateor mportkey

B2 Branches (@) Working directory| //
B feature =yl /4 &
e h Commit ndex x
b 5693-doc ) feature/i5693-doc-3.00 | _goffesture]
B 3.00versc @
B master €5

P reesse commit splitto sash, modlfy history

Bran.





_images/putty_key_generator1.png
1P PUTTY Key Generator
Fie Key Conversions Help

Key
Please generate some randormness by moving the mouse over the blank area

Actons
Generate 3 publc/pivate key pair Generate
Load an exising pivate key fie. Load
Save the generated key Savepublickey | Saveprvate key
Parameters
Type of key to generste:

RSA DSA ECDSA ED25519 SSH1 (RSA)

Numberof bits in 3 generated key: 2048






_images/ready.png
98 Git Extensions 3.00.00.4409 Setup -

Ready to install Git Extensions 3.00.00.4409 %

Edr *

Ciick Install to begin the instalation. Cick Back to review or change any of
Your installation settings. Click Cancel to ext the wizard.

oo |[Om] | e






_images/rebase1.png
Working directory.

Commit index

DT dummy change 2

dummy change 1 [

N

master | gitedensions/master | Correct version nu
Update build version 3.00.00 -> 3.01.00.0 (#5831)
feature/version-update Update build version 2.99.90 >
spd@T0/feature/lockreelist Review changes

Merge pul request #5878 from drewnoakes/fix-5859.

[






_images/push_dialog.png
K Push (FAdenge\gitexensions 4\GitEstensionsDoc\) o X

Push to
® Remote = | [&2 Manage remotes
Ot ttps//github.com)/ gerhardol/GitEstensionsC

Push branches  Pushtags Push multiple branches

Branch to push

[ Force With Lease [ Force Push Recursive submodules |On-demand v
0] Replace tracking reference
[ Create pull request afer push

Pull @ Push






_images/push_toolbar.png
LY==

~ Fdevige\gitertensions_4\GitxtensionsDoc ~ feature/iS693-doc-3.00 v | &f + & @ Commit(11) £% () +|






_images/pull_toolbar.png
L") | m]|=|[=Rd

~ Fi\dev\gcgitextensions 4\GitbxtensionsDoc ~ feature/i5693-doc-3.00 +| {f v & () Commit (1) [ (1) ~|





_images/push1.png
Working directory /5 43 =4

Commit index

) feature/i5693-doc-3.00 RIS )

fiup

> _gofesture/i5693-doc-3.00. Update source/pluginsist





nav.xhtml

    
      Table of Contents


      
        		
          Git Extensions 3.5 Manual
        


        		
          Git Extensions
          
            		
              Features
            


            		
              Video tutorials
            


            		
              Links
            


          


        


        		
          Getting Started
          
            		
              Installation
            


            		
              Portable
            


            		
              Settings
            


            		
              Dashboard
            


            		
              Create new repository
            


            		
              Open repository
            


            		
              Clone repository
            


            		
              Clone Github repository
            


          


        


        		
          Settings
          
            		
              Git Extensions
              
                		
                  General
                


                		
                  Appearance
                


                		
                  Revision Links
                


                		
                  Build server integration
                


                		
                  Scripts
                


                		
                  Hotkeys
                


                		
                  Shell Extension
                


                		
                  Advanced
                


                		
                  Detailed
                


                		
                  SSH
                


              


            


            		
              Git
              
                		
                  Paths
                


                		
                  Config
                


                		
                  Advanced
                


              


            


            		
              Plugins
            


          


        


        		
          Browse Repository
          
            		
              View revision graph
            


            		
              Search or filter the commit history
              
                		
                  Quick search in history
                


                		
                  Go to a specific commit
                


                		
                  Filter history
                


              


            


          


        


        		
          File history
          
            		
              Commit
            


            		
              Diff
            


            		
              View
            


            		
              Blame
            


          


        


        		
          Commit
          
            		
              Commit changes
              
                		
                  Staging changes
                


                		
                  Staging selected lines
                


                		
                  Undoing or resetting changes
                


                		
                  Making the commit
                


              


            


            		
              Amend commit
            


          


        


        		
          Stash
          
            		
              Revision graph
            


          


        


        		
          Tag
          
            		
              Create tag
            


            		
              Delete tag
            


          


        


        		
          Branches
          
            		
              Create branch
              
                		
                  Orphan branches
                


              


            


            		
              Checkout branch
            


            		
              Merge branches
            


            		
              Rebase branch
            


            		
              Interactive rebase
            


            		
              Delete branch
            


          


        


        		
          Patches
          
            		
              Create patch
            


            		
              Apply patches
            


          


        


        		
          Remotes
          
            		
              Manage remote repositories
            


            		
              Git Credential Manager
            


            		
              Create SSH key
              
                		
                  PuTTY and github
                


                		
                  OpenSSH and github
                


              


            


            		
              Pull changes
            


            		
              Push changes
            


          


        


        		
          Merge Conflicts
          
            		
              Handle merge conflicts
            


          


        


        		
          Modify Git history
          
            		
              Cherry pick commit
            


            		
              Revert commit
            


            		
              Modify the last commit
            


            		
              Modify an older commit
              
                		
                  Interactive rebase
                


                		
                  Using autosquash rebase feature
                


                		
                  Edit/reword commit
                


              


            


          


        


        		
          Notes
        


        		
          Submodules
          
            		
              Manage submodules
            


            		
              Add submodule
            


          


        


        		
          Worktrees
        


        		
          Maintenance
          
            		
              Compress Git database
            


            		
              Recover lost objects
            


            		
              Fix user names
            


            		
              Ignore files
            


          


        


        		
          Translations
          
            		
              Change language
            


            		
              Translate Git Extensions
            


          


        


        		
          Windows Explorer
        


        		
          Visual Studio
          
            		
              Menu
            


            		
              Toolbar
            


            		
              Context menu
            


          


        


        		
          Command line
          
            		
              Git Extensions command line
            


          


        


        		
          Appendix
          
            		
              Git Cheat Sheet
            


          


        


        		
          Plugins
          
            		
              Auto compile SubModules
            


            		
              Bitbucket Server
            


            		
              Create local tracking branches
            


            		
              Delete obsolete branches
            


            		
              Find large files
            


            		
              Gerrit Code Review
            


            		
              GitHub
            


            		
              GitFlow
            


            		
              Gource
            


            		
              Impact Graph
            


            		
              Jira Commit Hint
            


            		
              Periodic background fetch
            


            		
              Proxy Switcher
            


            		
              Release Notes Generator
            


            		
              Statistics
            


          


        


      


    
  

_images/advance_filter_dialog-menu.png
® Comrl

DIff with:
7 GitlI/Gi
7 GitUI/Re

Copy to clpboard
Checkout branch
L Merge nto current branch
. Rebase curentbranch on
Reset current branch to here

E)

Create new branch
Rename branch
Delete branch

W EaE

Compare

4 Createnewtag
Deletetag

A Checkoutrevision
& Revert commit
& Cheny pick commit
[ Archive revision

& Advnced
Navigate

4 Open build report in the browser

© OpenonGitrub

supdate

Update the changelog for v3 RussKie

Russie
3 — s
. Ruskie
HenkWesths
Ruskie
D Rusie
> Jconsole @ Build Report
N -
, [5] howatmanans Curesi
Show curent branch oly Cutesiiey
Show itced branches Cutesie T
Show remetebonchs Cutesie
Show el efrnces
S Eir———
| Showsupepriecbonches
Show stperprcectremote banches
Show reion graph colamn
Show uthor vt coumn
Show uthos e column
Show dtecolumn
Show SHA coumn
Show buidstotus on
Show b sotus o
[r———
Show uthor dote
Show rcltve dote
Show merge commits Cutesie
Showtgs CutearsT
Show itnots

Highlight selected branch (untl efresh)  CtSkift=B

Ctrl+Skift
Ctrl+F

& Showfirst parents
T Setadvancedfiter






_static/minus.png





_images/advance_filter_dialog.png
X Fiter

Since
Unil
Author

Committer

File filter

Branches

[ den 9 december 2018

[ den 9 december 2018

Show current branch only

Simplify by decoration






_static/git-extensions-logo-128px.png





_images/add_note_context_menu.png
® Commit B2 Diff %3 Filetee /7 GPG @M Console () BuildReport

Author: Russkie <RussKie@users.noreply.github.com>

Date: 14 hours ago (2018-12-13 08:10:44)
Committer:  GitHub <noreply@github.com>

Commit hash: a177c46a2f0¢7a42481d2162f563890510¢ 1695
Children:  93cOcTca7é cabedasfD

Parents: ddDbebe3c) 2265114725

Merge pull request #5878 from drewnoakes/fix-5859-blocking-avatar-download

Avoid blocking UT via WebClient.OpenReadTaskAsync

Related links: View on GitHub, PR 5873
Contained in branches: feature/version-update

Contained in no tag

Derives from tag: v3.00.00-rc2 + 45 commits

Copy commitinfo
Show local branches containing this commit

Show remote branches containing this commit

Show remote branches only when no local branch contains this commit
Show tags containing this commit

Show messages of annotated tags

Show the most recent tag this commit derives from

Add notes Ctrl+Skift N






_images/add_submodules.png
Add submodule

Path to submodule
Local path

Branch.

O Force.






_static/plus.png





_static/up.png





_static/up-pressed.png





_images/amend_commit.png
) Commit message ~ =" Commit templates ~ (I Create branch
Fixes 5880: Reorder nodes correct]






_static/down.png





_static/file.png





_images/apply_patche.png
X Apply patch (F\dev\ge\gitextensions_4\GitExtensionsDoc))

@ Patch file
O Patch directory

— O X
= | Jgnore Whaspc.

Sign-Off

F\temp\0001-branches.patch Browse

Name  Subject Author Date Status






_images/branch.png





_images/cherry_pick.png
X Cheny pick commit

Cherry pick this commit:
3a40a20abd

Review changes
Author: Henk Westhuis

Commit date: 2 days ago (2018-12-13 12:40:34)
Branch(es)  n/a

Tag(e): n/a

Automatically create a commit

0] Add commit reference to commit message

X
Choose another
&

Cherry pick.






_images/cherry_pick_context_menu.png
Working directory
Comit ndex

) feature/refactor | dummy change 2

dummy change 1

master| gitestensions/master  Cortectversion nu

Update build version 3.00.00 -> 3.01.00.0 (#5881)

feature/version-update | Update build version 292

[ Copyto clipboard

8 Checkout branch ,
Ml Mergeinto current branch »
ReH . Rehase current branch on »

5P{43 Reset current branch to here

91 3§, Create new branch |

4 Deletebranch »
B2 oiff %

B2 Compare »

Create new
Diff with: Minof “* &

/ GitU/GitUl.cs ¥ Checkout revision
./ GitUl/UserCo{ 4 Revert commit |

/" GitUl/UserCol ¢ Cherry pick commit

/Gt UserCol [5 Archive revision ;

= GitU/UserCol gy Advanced >t
Navigate ,
15 view >

© OpenonGitrub
supdate






_images/branch_toolbar.png
i [/~ | £+ Fadevgergitextensions 4\GitextensionsDoc .‘ @





_images/checkout_branch.png
Working directory /4 41 =1
Commit index

) feature/i5693-doc-3.00 remotes
bugfix/my_branch  fixup

[ _go/festure/i5693-doc-3.00  Update source/plugins.rst
Teature/ui-refresh | _golfeature/ui-refresh

Copyto clipboard
tag

& =

Checkout branch
stash

Merge nto current branch

&

commit <ol to ctach modifv hictory P

feature/ui-refresh
_goffeature/ui-refresh






_images/command_line_usage.png
X Commandiine usage - X

Supported commandine arguments for
giteccmd / gitex (located in the same folder as GitExtensions.exe):

browse [path [-fiter=] [-commit=]
about

2dd [flename]

addfiles [flename]

2pply [filename]

2pplypateh filename]

blame filename

branch

checkout

checkoutbranch

checkoutrevision

chery

cleanup.

clone [path]

commit [-quiet]

difftool filename

ilhistory flename

ileditor flename

formatpatch

gitbash

gitignore

help (shows thi dialog)

it [path]

merge [-branch name]

mergeconfiics --quiet]

mergetool [—quiet]

openrepo [path] [-fitter=]

pull[-rebase] [--merge] [-fetch] [--quiet] --remotebranch name]
push [--quiet]

rebase [--branch name]
remotes

reset

revert filename
searchfile

settings

stash

synchronize [--rebase] [--merge] [-fetch] [
tag

viewdit

viewpatch filename]






_images/commit_contextual_menu.png
Sk EE O

SO BEeb Lo W ESF

kel

Copy to clipboard

Checkout branch
Merge into current branch
Rebase current branch on
Reset current branch to here
Create new branch

Rename branch

Delete branch

Compare

Create newtag
Deletetag
Checkout revision
Revert commit
Cherry pick commit
Archive revision
Advanced

Navigate

View

Open build report n the browser

Open on GitHub
supdate






_images/clone.png
X Clone

Repostarytocone. I3

ol/NBuggi]

Destinton: [dengaghetemsion £

Subdiectonytocete [N

oo [efot remte FEAD)

The repository will be cloned to a new directory located here:
Fdev\ge\gitextensions 4\NBug (New directory)

Repository type
® Personsl repository
© Public repositry, no working directory (--bare)

Initilize all submodules.

Download full history

B losdsiiy

[ Use LFs extension

Clone






_images/command_line.png
0003003 NINGHGS //dev/qc/gitextensions 4 (oriash93/_5109)






_images/commit_dialog_commit.png
X Commit to feature/i5693-doc-3.00 (F:\dev\gc\gitextensions 4\GitExtensionsDoc)

2 | Werking dirctory changes +

/" source/commit.rst

/" source/images/commit_dialog.png.

— cource/images/reset changes g

- source/mages/commit rest_changespng O

@ | © Unstage 8 stuge | 8

R

@ Commit&push

[ Stage n Superproject
[ Amend Commit

4 Resetall changes

3 Reset unstaged changes






_images/commit_dialog_spellchecker.png
©  Commit 4 Commit message + =] Commit templates ~ (1, Create branch
Incorrect speting

G Commit&push “peling
st D
[ Amend Commit “pewing
suppling
6 Resetallchanges spooling
Addto dictionsry
3 Reset unstaged changes. gnoreerd
Remove word
cut
Copy
Paste
Delete
Selectall
[oonay 0] ene
[] Markilformed ines de0E
en-aU
enca
encB
] s
=
b
frfR
T
ANL
poL
10RO






_images/commit_dialog.png
X Commit to feature/is693-doc-3.00 (F\dev\gegitexensions 4\GitEstensionsDoc) o X

|l Working dectory changes -

 source/commitest

@ | @ Unstage 8 stge | &

Committer Gerhard Olsson <gerhardol@users.noreply.github.com>

diff --git a/source/commit.rst b/source/commit.rst
index bSasbbb. .b525¢29 100644
a/source/commit.rst

Commit changes

21 -Changes can be committed to the local repository. Unlike source control management systems you do not need to
21 +Changes can be committed to the local repository. Unlike Source control management systems you do not need to
checkout files before you start editing. You can just start editing files, and review all the changes you made in the commit
dialog later. When you open the commit dialog, all changes are listed in the top-left.

e 5 Commit message ~ (=] Commitemplates + (1 Crese branch Gz

G Commit&push

[ Stage n Superproject
[ Amend Commit

© Resetall changes
. Reset unstaged changes.

b feature/i5693-doc-300  Staged 0/1 Ln 0  Col O






_images/commit_menu_edit_ignored.png
3 Commit to festure/i5693-doc-3.00 (F\dev\ge\gitextensions_4\GitExtensionsDoc)
i | £ Working directory changes ~

Show ignored files <
'« Showskip-worktree files

/st Show assumed-unchanged files

=5( v Show untracked files

Delete selected files
Reset selected files

6 Reset unstaged changes

6 Reset all (racked) changes

[ Editlocaly ignored les
Delee il untracked fles:

e $50se |8






_images/commit_reset_changes.png
X Commit to feature/i5693-doc-3.00 (FAdev\ge\gitextensions_4\GitExtensionsDoc)

L

e
E

+s

A Working directory changes =

Show ignored files
Show skip-workiree files
Show assumed-unchanged files

Delete selected files
Reset selected files

Editignored files
% Edilocally ignored files

&

Selection fifter

v Show untracked files

6 Reset all (racked) changes

Delete all untracked files

8 suge | §
© Commit

@ Commit&push

] Stage in Superproject
[ Amend Commit

[ T

63 Resetunstaged changes





_images/commit_diff_view.png
X gitextensions_4 (release/3.00) - Git Extensions - o X
Start Repository Navigate View Commands GitHub Plugins Tools Help

|1/ = | B2+ Fdengagitatensions 4 + release300 +| G+ § © Commit(s) G3@D +| ) @ Benches | |T

L Jve

= gitetensions/master| Update RADME md [ T4 Tesaise 300004 A
B Branches (111) Working directory /2 =1 dg1 Ba1
v P release g

P 3.00 Commit index Al

P gotest I ) release/3.00 | > gitetensions/release/3.00 R R IR Russkie

v 25

v Merge pull request #5860 from spe70/feature/ quardensurescore Russkie 181207110518 f9decSE @ 3000044
B spamo ’ SpT/festureguadensrescore Added guard or EnsureScorelhbove. HeokWestis 2018207085723 Sabatdc ® 3000048
:;m:'“m SpcdT0/release/S781 | Fix build script Russkie 181206 114715 ci5bad2 ©3.0000.44..
B bugfix 5781: Attempt to fix disappearing scrollbar Henk Westhuis 2018-12-06 104342 fae7be2
P 5683 exceptio Mark repo as clean only for release branches RussKie 2018-12-05 22: secbcdc
B mstv
B jbislobr Remove PluainManaaer from the release RussKie 2018-12-052220:39 16097 v
® dl'fﬂmks ® Commit 23 Diff %3 Fietree /2 GPG @M Console @) BuildReport
-t 5| GEFF gt o/GHEUL/GIRUL cspro] b/GEUL/GHtUT.c5pro]

index b63faz8be. . 51732c2d 100644

B tmp iffwith: ergepul €quest #5660 from spda0 st~ T
I master " GiUI/GitULcsproj +++ b/GItUT/GtUL. cspro]
B amaorno - i Resources Changelognd
J Abhigaraall “cone. Include="Properties\Datasources\GitComands. GitIten. datasource” />
J russie <tone Include="Properties\Datasources\GitConmands. GitTtenstatus. atasource” />
¥ 9999999999¢ <None Include="Properties\Datasources\GitCommands.GitRevision. datasource” />
B cypto-rsa 1715 <None Include="Resources\ChangeLog.md" />
B NikolayXHD <None Include="Translation\Czech.Plugins.x1f">
b amiorano_an <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
(b mdonates </None>
¥ navigate_com
B pmiossec
B test
B Nikolay
B or






_images/commit_log_stash.png
master| | origin/master | Ogerhardol/festure/3.00-version  feature/3.00-versi
feature/3.00-vesion | |_golfeature/3.00-version  Updste rlesse verson
stash | WIP on i5653-doc-3.00: cfb269 Spit Browse-> Browse, il History
index on 15693-doc-3.0: cfb269b Split Browse->Browie, Fle History
untracked fileson 15693doc-3.00: cfb263b Split Browse->Browese,File History





_images/context_menu_blame.png
® Commit

Diff with:_go/latest @f9%e
" sourcpiestis

B2 Open with difftool »
Savesclectedas..  CirlsS
Reset file(s) to »
Cherry pick file's changes
Editfile 2
Delete file Del

Copyfullpath(s)  Ctrl+C

V¥ FOT XL T Y

Showin folder
Show in Filetree

File history H
Blame. B
Find Ctrl+F






_images/compress_database.png
X gitestensions 4 festure/verson-update) - GitExtensions

Repository | Navigate View Commands GitHub

f Refresh s
File Explorer CtiSkit0.

Remote repositories..

Submodules...
Update all submodules
Synchronize all submodules

Workrees

[ IR

Edit gitignore
Edit git/info/exclude
Edit gitatributes
Editmailmap

Edit gitreview

Sparse Working Copy

Plugins  Tools H

~ festureversion-updte +| GF -

directory g1 Bat

index
[r:lvnim»npdmz > Ogerhardol

feature/lockfreelist Review chai

Jions/master. Merge pullrequest #5
timalizatons

ynchronizedCallection with cheaper
festur/tygetecacthpath. Delete T
Bkes/code-of-conduct Add cod of
Bkes/fix5855-blocking-avatar-down

fpkes/master Merge pull request 258

Git maintenance

@

[T compesgitostame

& Repository settings
3 Close (goto Dashboard)  Ctrl+W

@ Recoverlost objects...
& Deleteindeclock
Edit git/config

@





_images/context_menu.png
@iE-[o-s .
Search Solution Explorer (Ctt 0 = 1a3
127 Solution ‘GitExtensions' (45 pr :::
b nuget ol
b Extemals s
b Plugins 18
b W Solution ltems 149
b W UnitTests 150
bomvs 151
13 GitCommands 152
4 GitExtensions =3
° 154
b o Properties s
b vm References ot
D app.config 157
5 app.manifest 158

B AutoCompleteRegeres}






_images/delete_tag.png
X X
seectisg a0 <] [oeee
“This willdelete the selected tag from the (local) repository.

2] Delete tag afsofrom the following remote(s):

Ogerhardol

5 Help  (includes information about deleting tags which are alreadly pushed)





_images/destination.png
98 Git Extensions 3.00.00.4409 Setup -

Destination Folder

Ciick Next to nstallto the defaut folder or cick Change to choos...

Glt

Edr *

Instal Git Extensions 3.00.00.4409 to:

[C:\Program Files (x86)\GitExtensions\
Change...

Cancel






_images/create_branch_dialog.png
¥ Createbranch X

Branch name bugfodmy branch]
Crestebranch atthis eviion [+83867c803 =

Checkout after create

Orphan

[ Cresteorphan ' Clesr working diectory anc

D Hep 1, Create branch.






_images/delete_branch.png
) feature/i5693-doc-3.00 remotes

bugfi/my_branch |

[ _gofeature/ises

[ Copyto clipboard

[ Checkoutbranch »

L Mergeinto current branch ,

feature/ui-refresh

2L Rebase current branch on »
42 Reset current branch to here.

stash

commit, spltto stash| (B Creste new branch,

45 Rename branch »

Iy Deletebranch v ] bugfmybranch

file_history

fixup explorer





_images/file_history_blame.png
X File History - GitUl/CommandsDialogs/FormBrowse.cs - Fi\dev\ge\gitextensions 4
Branches: - - | Fiten T4 Q-0
Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, etc.) registers for callbacks and handles its own update, instead of being told to reload

Issue 5616: Provide a way to remove all invalid recent repositories.

Force commitinfo to clear on module change.

View A Blame
Author.  Henk Westhuis <henk westhuis@hotmailcom>
Date: 10years ago (2008-11-27 20:17:4)
Commit hash: bfcbeB32dSaad0ONGTieSa 3452 16730%e e
Parent: abadeabis

added files

Notes:

Talos2 - 2012-06-15 00:03:18 - GitUI/FormBrowse.cs
Henk Westhuis - 2008-11-27 20:17:44 - GItUI/Browse.cs

Drew Noakes - 2018-06-19 11:37:16 - GitUI/CommandsDialogs/FornBrowse.cs
Steffen Forkmann - 2010-07-28 16:44:38 - GitUI/FormBrowse.cs

Arkadiy Shapkin - 2011-10-28 01:53:22 - GitUI/FormBrowse.cs

Drew Noakes - 2018-07-19 16:22:56 - GitUI/CommandsDialogs/FornBrowse.cs
Steffen Forkmann - 2010-87-28 16:44:38 - GitUL/FormBrowse.cs

using System;
using System.Collections.Generic;

Author: Henk Westhuis
AuthorTime: 2008-11-27 20:17:44
Committer: Henk Westhuis
CommitterTime: 2008-11-27 20:17:44
P —

TR






_images/file_history_commit.png
¥ File History - GitUl/CommandsDialogs/FormBrowse.cs - F:\dev\gc\gitextensions 4
Branches: -+ T~ | Fiter V- ¢ |@-0%
Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, etc.) registers for callbacks and handles its own update, instead of being told to reload

Issue 5616: Provide a way to remove all invalid recent repositories.

Force commitinfo to clear on module change.

View 4 Blame

RussKie <RussKie@users.noreply.github.com>
1 month ago (2013-10-31 06:54:11)

Committer:  GitHub <noreply@github.com>
‘Commit hash: 66380983451680c816d0a6c46797c37ed2507449

Parents: 0e3ddbdls5f e558ea5068

Merge pull request #5641 from NikolayXHD/fix_commit_info_scroll
Fix commitInfo scroll on mouse wheel

Notes:

Related finks: View on GitHub, PR 5641
Contained in branches: vbjay/_AboutLayout, tmp/master, spdr&70/_feature/gitcmdmissing, spdr870/ feature/5853, spdr&70/ feature/ST82, spdr70) feature/5673, russkie/ fix_ 5644 _undi

Diff with: Oe3ddbds N Giff --git a/GitUT/Con
/" GitUl/CommandsDizlogs/FormBrowse.Designer.cs index 7306feced..759d3

. --- a/6itu1/ConmandsDi
/" GitUl/CommandsDialogs/FormBrowse.cs 44+ b/GEtUT/CommandsDi

/” GitUl/Commitinfo/Commitinfo Designer.cs

/’ GitUl/Commitinfo/Commitinfo.cs

/" GitUl/Commitinfo/CommitinfoHeader.Designer.cs var child
/’ GitUl/Commitinfo/CommitinfoHeader.cs o ;}:v:xr_.x
/’ GitUl/MouseWheelRedirector.cs o E

Diff with: e558eas0 N @ parer
/" github/ISSUE_TEMPLATE.md 1220 - paren
e Externals/NBug (+1) 221 - 3
/’ GitCommands/GitCommands.csproj }

+ GHEU BinanySearch.cs

8 narySearch.cs private async
/ GitExtUtils/GitExtUtils.csproj





_images/explorer_integration.png
[ GitEx Browse
©  Gitex Commit

i GitExtensions

& Pull
@ Push
View stash

View changes

Checkout branch
Checkout revision
Create branch

pPoe R

‘Open with difftool
File history

Reset file changes
Add files

Apply patch

+ 5 &

Settings

©






_images/explorer_integration_new.png
fE Gitex Clone
(@ GitbxCreste new repository

&6 GitExtensions

@ et






_images/file_history_diff.png
X File History - GitUl/CommandsDialogs/FormBrowse.cs - F/\dev\gc\gitextensi
Branches: - - | Fiten T-

Add RefreshTree

Rework RepoObjectsTree so that each sub-Tree (Branches, Remotes, e

Issue 5616: Provide a way to remove all invalid recent repositories.

¢

® Commit View & Blame

diff --git a/GitUI/CommandsDialogs/FornBrowse.cs b/
index 7306feced. . 759455737 100644,

--- a/6itU1/ConmandsDialogs/FormBrowse.cs

+++ b/GitUT/CommandsDialogs/FornBrowse.cs

var children = RevisionGrid.GetRevisio
RevisionInfo.SetRevisionkithChildren(r

1217 - if (RevisionInfo.Parent is Panel paren
1218 - {
1219 - parent. Autoscroll = true;
1220 - parent. Autoscrolliinsize = Revisio
1221 - 3

T

private async Task Fill6pgInfoAsync()





_images/remote_repositories.png
X Remote repositories

Remote repositories  Defauit pull behavior (fetch & merge).

Active

g0
mstv

+

R
e
v [/ comgearolGrbcensor <] [ Brovsas |

) Separate Push U






_images/file_history_view.png
¥ File History - GitUl/CommandsDialogs/FormBrowse.cs - Fi\devge\gitextens

Branches: - - | Fiten 4

¢

mNEBEeWNE

Add RefreshTree

Rework RepoObjectsTree so that each sub- Tree (Branches, Remotes, ¢

Issue 5616: Provide a way to remove all invalid recent repositories.

mmit_inf

Il request #5641 from NikolayXHD/f

Force commitinfo to clear on module change.

® Commit 8 0ir [ View | 4 Blame

using System;
using System.Collections.Generic;
using System.Componenttiodel;
using System.Diagnostics;

using System.Drawing;

using System.Drawing.Drawing2D;
using System.10;

usine System.Ling:





_images/resolve_merge_conflicts.png
% Resolve merge conflicts - o x
Unresolved merge conflicts

Open in pimerge
Filename

Start mergetool

GitbxtensionsShellEx/GitExtensionsShellbx.rc

Rescan merge conflicts

Abort merge

@ The filehas been changed both locall(ours) and

Local  GitButSshAskPass/SshAskPass.rc2
Base  GitbSshAskPass/SshAskPass.rc2
Remote  GitEtSshAskPass/SshAskPass.rc2

Help





_images/remote_repositories2.png
X Remote repositories

Remote repositories  Default pull behavior (fetch & merge)

Local branch Remote Default merge S —
name. repository with
feature/ui-refresh < ey
feature/i5693-doc-3... _go feature/iS693-doc-3..  Default merge with
master origin master
feature/3.00-version _go feature/3.00-version
release/3.00
latest origin latest
Prune remote branches

I x

festure/uirefresh

e B

festre/urreresn B
el Sove changes

Update all remote branch info






_images/revert_commit_context_menu.png
Working directory

Commit index

) feature/refactor dummy change 2
dummy change 1

master | gitedensions/mster Correct version nu.
Update build version 3.00.00 -> 3.01.00.0 (#5881)

feature/version-update | Update build version 299

Copyto clipboard

8 Checkout branch
L Merge nto current branch »
. Rebase curentbranch on »
€ Reset curentbranch to here

Create new branch
Delete branch »

Compare

Diffwith: Mino| 4 Create newtag.





_images/resolve_merge_conflicts_menu.png





_images/recover_objects.png
% gitextensions 4 (master) - Git Extensions

|

Repository | Nevigate View Commands GitHub Plugins Tools He
Ty Refresh B, &-¢ ©
[ File Bxplorer CtreSkift-0
2 Remote repositor
Submodules...
L ate build version 3.00. o1
& Updateall submodules e
% Synchronize all submodules SIS0 SPURE] Update buld ver
B Workrees
2 Edit gitignore
Edit git/info/exclude. 9es
Edit gitatributes Bs/fix-5859-blocking-avatar-download
Editmailmap
Edit gitreview per array vithout locking
T TryGetExactPath, to remove performa
o7 Gitmaintenance £ Compress gt daabase
@ Repository settings @ Recover lost objects, .
¥ Close (goto Dashboard)  Ctrl+W & Deleteindexlock

AEEE— oo o LR

&  Edit.git/config






_images/rebase_interactive_fixup_commit.png
Working directory.

Commit index

) feature/refactor dummy change 2

Gerhard Olsson  2018-12-15 1

[

Gerhard Olsson

(73 Copyto clipboard » =
i ————
U5 Rebasecument branch on , B cemrdomson 01012132
42 Reset current branch to here 90-> . [il GerhardOlsson  2018-12-102
Creste new branch B Henkwesthiis 20ie-12-131
Compare s pso.. o (@ Russkie 2018-12-130
) @ ket 201812122
. [  vitho. ! HenkWesthuis  2018-12-121
. [ .. 0 U HenkWesthuis 2018-12-111
& Cheny pick commit auct (@ DrewNoakes 201812121
& Archive revision -
[ Advanced > Edit commit
> 4 github Navigate > Reword commit
§=Pie [ Crteafoupcommit x|
few Create »fxup commi
D |9 v , p commit [
B | Q) openonGitrub Create 2 squash commit
s Eemal Get help on how to use these features
iy






_images/reflog_revision.png
X gitextensions_4 (master) - Git Extensions

Stat  Repository Navigate View Commands GitHub Pl

alog

Working directory g1 841

£+ Fdenge\gitetensions 4 + master +| {f

Commit index

feature/version-update  Ogerhardol/feature/version-updat

Update build version 299.90 > 3.0100.20

Update build version 299.90 -> 3.01.00.20

spdigT0/feature/lockireelist Review changes





_images/refactor_branch.png
feature/i5693-doc-3.00 remotes

Working directory /3 41 =

Commit index

_gofeature/i5693-doc-3.00. Update source/plugins.rst

feature/ui-refresh _go/feature/ui-refresh Doc Ul touchup





_images/related_links_location.png
'?8 Fietree J° GPG @ Console

Henk Westhuis <henk westhuis@ultimo.com>

‘ 3 days ago (2018-12-05 13:41:22)

SN ot hash: <4137 eTddab2dash 702 26043607524
S Child: 1650004453

PRSP parent: Shet321707

#5853: Use stack instead of recursion in EnsureScoreIsbove

Contained in tags: v3.00.00

Derives from tag: v3.00.00-rc2 + 53 commits






_images/reflog_show.png
X gitextensions 4 (feature/version-update) - Git Extensions

Stat  Repository Navigate | View | Commands _GitHub.

CYl==[=hd- A
Search:

¥ Branches (112)
v feature

Plugins _Tools _Help.

Show all branches
Show current branch only
Show filtered branches

Show remote branches

Ctrl+Skift-A
Ctrl+Skift+U
Ctrl+Skift-T

Ctrl+Skift-R






_images/github_account_settings.png
_CEEET - °

<« c @ & GitHub, Inc. (US) | https://github.com/settings/ssh/new i @ »

Marketplace Explore

Personal settings SSH keys / Add new
Profile
Title
Account
Demo
Emails.
Key
Notifications
ssharsa
Biling AAAAB3NzaC1yc2EAAAABIQAAAQEANRAL)IBWBIgTYWRS +g3SsUnv2qKi3jTAuZjIRfOJo+m6t6n +5TBgKaVWCyCeOzQ
SIfvKKNKQbuRS5Kyws6WBm3lIbJlivdkeyOkgmYreaYQXqiBoh5u626k3QixAFkcxlsnhwofNHUOEzBXzEbP27vBHmMBwnnnUs.
SSH and GPG keys X35+ 1XMmE9EeOjsvhaiGrSCnVPmLZybKJmxQPmNGM/tijlBmNOK7q/TDQG5ucK1CCqZEoUkt98k
/H+lj+bdllaHdPItOPBiAsBftlbcVmeMzrSqJiJPiY6T +oLMuOSWySSRb1iT7 Wazxtd TT7HiXUEPNfCVRxh +CToQfE 1 TyPzBkg
Security 26Q4+ZzwKw== rsa-key-20181210]
Sessions

Blocked users

Repositories d SSH ke

Organizations .






_images/github_clone.png
® GitHub: Remote repository fork and clone - o X

My repositories . Search for repositories

e o] srom] -
e i M

e gl

gitedensions.github.o Noo 4 No 1fyou want to fork 2 repository ovned
P bl A o
|CharpCode.TextEditor Ve 4 No repositoris tab.
e hodll N

e hodll M

e gl A

e gl il .

e

0 e

e

. s

Wil clone git@github.com:gitextensions/gitextensions.git into F:\dev\g\gitextensions.
You wil have push access.






_images/git_menu.png
4] Gittensions - Microsoft Viual tudio

Fle Edt View | Gibe | Project Buld Debug
e-o|8- Browse
Clone reposior
Jution Exlo *“ e
reate new repository
[y "
© Commit
SearchSolution| g
T Soluion'S & pp
b nuget
b temal 0 StEsh
b 1 Plugins 43 Reset File Changes
b5 Solutior 5 Manage remotes
'; 5 UitTes| (&3 it gitignore
b Apply patch
4 Format patch
File history
View changes
& Blame
2 Findfile
< % Checkout branch
3§ oy 8 Crestebranch
b wmRefe b Merge
b Gty £ Rebase
» Solve merge conflicts
Cheny pick
K ry i
b Gitbash
> Settings
b ¢ Bind @ About Git Extensions
b e Clol






_images/git_missing.png
Q tror

9 The Git executable could not be located
on your system.

> Find git..

- Install git..






_images/language.png
X Choose language

Choose your language
You can change the langusge st sny time n the settings dislog

rAin IS

English Dutch French
German Polish Russian

Simplified Chinese:






_images/mail_map.png
X

Proper Name <Proper Name <proper@email.xc> Commit Name <commit@email.xc

Westhuis <Henk@.(none)> [
Henk Westhuis <henk_westhuis@hotmail.com>

For more information run ‘
command “git help shortiog”





_images/gitignore.png
X Edit gitignore

build
*.orig
tx.exe

GitExtensions. settings.backup
source/locale/.doctrees/
/source/_pycache_/
/source/extensions/_pycache_/
*.pyc

Add defaultignores Add patten

Example ignore patters

Generate a custom ignore file for git

Cancel el Save.






_images/jira_commit_hint.png
¥ Settings - lugin:Jra Commit Hint

E—

Vg T— ® Effective << O Localfor current repository << O Distibuted with current repository << (O Global for al repositories

2 General
5 2 Appearance
& Revison links
i bt plugin enabled
Jira URL [ttps:/jia.atassian.com
3 Shell extension e I
> U Advanced
L4 Detsled s password I
P ssH - —
1P 12 cuery [ssisnce = cumentUser) and resoltions EMPTY ORDERBY peedDate DESC
& Plugins Openthe query help: 2
i Auto compile SubModu {AffectsVersions} {Assignee (Components}(Created| {CustomFields} {Description) {DueDate} Environment) (FxVersions}
1 Bitbucket Server Jia fields. {HasUserVoted) {tem] {Jira} {irldentifier} {Key} {Labels} {ParentissueKey} {Priority} {Project} {Reporter] {Resolution}
# Delete obsolete branche| {ResolutionDate} {SecurityLevel) Status} {Summary} (Type {Updated}{Votes}
8 Find large files
O Gitrup {Key) (Summary}
! Goue i Message Template
& Perdic ackgraund

0 Proxy Switcher
& Statistics.






_images/manage_remote_repositories.png
¥ GitbxtensionsDoc (feature/i5693-doc-3.00) - Git Extensions
Start [ Repository | Navigate View Commands  GitHub

[ FileExplorer CtiSkit0.

Submodules...
Update all submodules
Synchronize all submodules

® 4@

Worktreec N





_images/rebase_dialog.png
¥ Rebase

L0

4 REMOTE

5 BAsE

Bion

st o s
#AAA e conicsoceur

green=
o commit

Rebase current branch on top of another branch
Current branch:  feature/refactor

Rebaseon -
) Interactive Rebase (] Preserve Merges ~ Autosqusch At siach
erg a

[ Specific range  From (exc) To |feature/refactor

Commits to re-apply:

Name Subject  Author

Rebase

Solve conflicts

Addfiles

Commit..

Continue rebase

Skip this commit






_images/rebase2.png
Working directory.

Commit index

DT dummy change 2

dummy change 1

master | gitedensions/master Correct version nu
Update build version 3.00.00 -> 3.01.00.0 (#5831)
feature/version-update Update build version 2.99.90 >
spd@T0/feature/lockreelist Review changes

Merge pul request #5878 from drewnoakes/fix-5859.






_images/rebase_interactive_autosquash.png
¥ Rebase

L0

4 REMOTE

5 BAsE

Bion

st o s
#AAA e conicsoceur

green=
o commit

Rebase current branch on top of another branch
Current branch:  feature/refactor

Rebase on  [3a40a20abdl8be37863635468f96529f1

[ Interactive Rebase [ Preserve Merges 2] Autosquash -~ Autc stosh

[ Specific range  From (exc) To |feature/refactor

Commits to re-apply:

Name Subject  Author

Rebase

Solve conflicts

Addfiles

Commit..

Continue rebase

Skip this commit






_images/rebase_interactive.png
X Fidev/gc/gitectensions/.gitrebase-merge/it-rebase-todo
bick 947208165 dumny change 1
pick 4feed7716 dumny change 2
Rebase 3c2ac977b. .4feed7716 onto 3c2aco77b (2 commands)
Conmand

P, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message

*
*
*
*
*
o #e, edit <comit> = use comit, but stop for amending
1o # s, squash <commit> = use commit, but meld into previous commit
11 # %, fiwp <commit> = like "squash’, but discard this comit's log message
12 # %, exec <command> = run command (the rest of the line) using shell
13 # b, break = stop here (continue rebase later with 'git rebase --continue’)
1s % d, drop <comit> = remove commit
15 # 1, label <label> = label current HEAD with o name
16 # €, reset <label> = reset HEAD to o label
17 #m, merge [-C <comit> | -c <comit>] <label> [# <oneline>]
s # . create a merge comit using the original merge comit's
o % . message (or the oneline, if no original merge comnit was
o # . specified). Use -c <commit> to reword the commit message.
S
22 # These Lines can be re-ordered; they are executed from top to bottom.
b ¢
bs  # If you remove a line here THAT COMMIT WILL BE LOST.
s+
b5 # However, if you remove everything, the rebase will be sborted.
*
*

Note that empty commits are commented out






_images/git_bash_toolbar.png
X GitExtensionsDoc (feature/i5693-doc-3.00) - Git Extensions
Start Repository Navigate View Commands GitHub Plugins Tooks  Help

|10/ | £3 + Fadengegitedensions 4\GitEtensionsDoc + feature/i5633-doc-300 +| {f + & © Commit [3() +| v






_images/merge_context_menu.png
B

Copyto clipboard

Checkout branch

i Gerhard €

Merge into current branch

e

Rebase current branch on

Reset current branch to here

Create new branch
Rename branch
Delete branch

Compare

1)
29990>

5859,

G cemara 0
G Gemara 0

Gerhard C

@ e

@) e





_images/merge_dialog.png
X Merge branches

Hide help
Hover to see scenario when fast forward is possible.

merge commit

[ current

other
4 REMOTE

current
4.L0CAL

postt for s
AN T ot oceur

Merge

Merge branch

Into current branch  master

® Kesp a single branch lne i possble (fst forward)

© Abwsys creste s new merge commit
1 Do not commit

Show advanced options

0] Use non-default merge srategy
] Squash commits

[ Allow unrelated histories

[ Addlog messages

1 Specity merge message

2






_images/merge3.png
Working directory.

Commit index

DT Mere branch featureefactor

feature/refactor dummy change 2
dummy change 1
> gitextensions/master  Correct version number fo.

Update build version 3.00.00 -> 3.01.00.0 (#5831)

fesravasion pdate]| Uptebd verien 29950
stk Reien changss [

[ ——





_images/merge_conflicts.png
T X





_images/new_repository.png
X Create new repository

Drectoyy |

Repository type
® Personsl repository
© Central repository, no working directory (~-bare -~shared=all)






_images/new_tag.png
Merge pull request #5860 from s
‘Added guard for EnsureScorelsal
script

5781: Attempt to fix disappearing

Fix b

Meark repo as clean only for releas

Remove PlucinManaer from thel

2 0iff % Filetree

® Commit

Diff with: Merge pul request #5860 from spch

" GitUI/GitUlLcsproj
./ GitUl/Resources/ChangeLog.md

Copyto clipboard

[l Checkout branch
L Mergeinto current branch
S Rebase current branch on
6 Reset cument branch to here

Create new branch

L%

%
%

e

Rename branch
Delete branch

Compare

Deletetag 3

& Checkoutrevision
& Revert commit

& Cheny pick commit
B Achive reviion
& Advnced
Navigate

7 View

Open build report n the browser

© OpenonGitrub
supdate






_images/move_to_category.png
Recent Repositories

Recent repositories.

909 (5 Show in folder tensions i

B )
Remove prajectfrom the st E
cther
& © Addnew.

master






_images/new_branch.png
-1

Working directory /1 %=

Commit index

) feature/i5693-doc-3.00 remotes

Copyto clipboard

Merge nto current branch
Rebase current branch on »
Reset current branch to here

Create new branch

Compare





_images/worktree_context_menu.png
X gitextensions 4 (feature/version-update) - Git Extensions
Stat [Repostory | Navigate View Commands  Gitub Plugins  Toos

Refresh Fs i 5 -l
File Explorer Ctrl+SKift+O.

master Update build version 3.

rectory g1 Ba1

Remote repositories...

Submodules...
Update all submodules

Synchronize all submodules [version-update, (> Ogethardolt

Workirees. 3

Edit gitignore






_static/ajax-loader.gif





_static/comment-close.png





_static/comment-bright.png





_static/down-pressed.png





_static/comment.png





_images/toolbar.png





_images/tag.png
release/3.00 VA0000[..]| Update the changelog forv3
Merge pul request #5860 from spr870/feature/guardensurescore

‘Added guard for EnsureScorelsAbove.
Fix build script





_images/welcome.png
98 Git Extensions 3.00.004409 Setup -

Welcome to the Git Extensions
3.00.00.4409 Setup Wizard

‘The Setup Ward wil instal Git Extensions
3.00.00.409 on your computer. Cick Next to
continue or Cancel to extt the Setup Wezard.

Back Cancel






_images/verify_database.png
X Veriy database

By default only unreferenced objects that are older than
2 weeks are removed when cleaning up the database. All
other object are only deleted when you run “Remove all
dangling objects”

Check commits you want to recover and press Recover button
Context menu for additional operations

Double-click on a row for quick view

[m]
[m]

Show commits ndtags [ Show other objects

Do not consider commits that are referenced only by an entry ina
reflog to be reachable.

Print out objects that exis but that aren't readable from any of the reference
nodes.

Check not jus abjects n GIT_OBJECT_DIRECTORY (SGIT_DIR/objects),
butalso the ones found i alternate object pools

Date Author

Type

] 2016-12-13 219 | dangling commit | Geshard Ofson

Hash

661b21b7e512103cf88354a112460/fb287aaeTh.

>

Parent(s) hashs

a177cA6221067a42481d2121563849

01 2016-12-11 16:27 | dangiing commit | Henk Westhuis

6b283¢5999b802¢56c05cd6cB8255das88e 18df

022¢8¢1643316e535b0ce32b6a6269.

] 2016-12-11 009 | dangling commit | Geshard Olson

473773653 17afbbfad07adc19a3f1540b23fba

034fc2528acBd1e18bedTodafeT4117

Remove all dangling objects

Recover sel

lected objects

<
Delete all LOST_AND_FOUND tags [

Cancel

>
| Save objectsto git/lost-found






_images/merge1.png
Working directory.

Commit index

DT dummy change 2

‘dummy change 1

master | gitextensions/master | Correct version nu... 4 S8 Gerha
Update build version 3.00.00 -> 3.01.00.0 (£5881) B cena

feature/version-update | Update build version 299.90 -> ... Li.. Gerha

spdi8T0/feature/lockireelist Review changes

Merge pul request #5878 from drewnoakes/fix-5859.





_images/merge2.png
feature/refactor dummy change 2
dummy change 1
Working directory.

Commit index

Update build version 3.00.00 -> 3.01.00.0 (#5881)

e ) Uptate b verson 29930 > . B
stk e chanss @

Merge pul request #5878 from drewnoakes/fix-5859.






_images/patche_dialog_result.png
Patch result X

Fiftemp/0001-branches patch






_images/perforce_p4merge.png
© SshAskPass.rc2 - Perforce PaMerge
Fle Edit View Search Help

&S B YY" » @« 04 i
3 diffs (ignore line ending differences) | Tab spacing: 4 | File format ( Encoding: System Line endings: Windows )

=&

Base: SshAskPass_BASE_2604rc2
Left: SshAskPass LOCAL 2604.1c2
Right: SshAskPass REMOTE 2604.c2

Differences frombase: 2
Differences from base: 0

Merge: SshAskPass.rc2 Conficts: 1
® [GitExtSshAskPass/SshAskPass_LOCAL_2604.rc2 I [GitExtSshiAskPass/SshAskPass_BASE_2604.rc2 @ [GitExtSshAskPass/SshAskPass_REMOTE_2604.rc2
S /110111101 11101 11101 11100111011110711101111171111111111 /110111101 1110111101111011110011101111011111111117111171 S /110111101 11101 11101 1110011101111071110111117111111111]
10| // Add manually edited resources here... 10| // Add manually edited resources here... 10| // Add manually edited resources here...
AL ZLIIIT T ITE 1101101110011 100 11100111011 1107111 N N
1271/ 1271/ 1271/
13|// Version 13|// Version 13|// Version
147/ 147/ 147/
15| VS VERSION INFO VERSIONINEQ 15| VS VERSION INFO VERSIONINEQ 15| VS VERSION INFO VERSIONINEO
16 FILEVERSION 3,61,00,0 16| FILEVERSION 3,00,00,4433 16| FILEVERSION-dummy-change2 3,00, 00,4433
17 PRODUCTVERSTON 3,01,00,0 17 _PRODUCTVERSTON 3,00,00, 4433 17 _PRODUCTVERSION 3,00, 00,4433
18] FILEFLAGSMASK Ox3fL 18] FILEFLAGSMASK 0x3fL 18] FILEFLAGSMASK Ox3fL
19| #ifder _DESUG 19| #ifder _DESUG 19| #ifder _DESUG
20| FILEFLAGS oxlL 20| FILEFLAGS oxlL 20| FILEFLAGS oxlL
21 #else 21 #else 21 #else
22| FILEFLAGS 0xOL 22| FILEFLAGS 0xOL 22| FILEFLAGS 0xOL
23| #endit 23| #endit 23| #endit
24| FILEOS OxsL 24| FILEOS OxsL 24| FILEOS OxsL
25| FILETYPE ox2L 25| FILETYPE ox2L 25| FILETYPE ox2L

& sshasieass.c2

R
// Bdd manually edited resources here...

TLLLIELELIIEIEI I I LTI 1L D11 IE 11T IE 1010101010101 1011110101111111111
"

1/ version

"

VS VERSION INFO VERSIONINEO

FILEVERSION 3,00, 00,4433
PRODUCTVERSION 3,00, 00, 4433
FILEVERSION 3,01,00,8

PRODUCTVERSION 3,01, 00,0
FILEVERSION-dummy-change2 3,00, 00,4433
PRODUCTVERSION 3, 00,00, 4433

nee

FILEFLAGSMASK 0x3fL

N #ifdef _DEBUG
FILEFLAGS OxiL
N #else
FILEFLAGS Ox0L
$endit

FILEOS 0Ox4L
FILETYEE Ox2L






_images/patche.png
1from 58c02ec4701c94cE71a4le1e5d50c5822859851F Mon Sep 17 00:00:00 2001
2From: Russell King <rmkEdyn-67.arm.linux.org.uk>

3Date: Sun, 17 Apr 2005 15:40:46 +0100

2 Subject: [PATCH 000213/123824] [PATCH] ARM: h3600_irda set_speed arguments
s

613600_irda_set_speed() had the wrong type for the "spesd” argument.

7Fix this.
e

9 Signed-off-by: Russell King <rmkarm.linux.org.uk>

10—

11 arch/arm/mach-sall00/n3600.c | 2 +-

12 1 files changed, 1 insertions(+), 1 deletions(-)

13

14 4iff --git a/arch/arm/mach-sal100/n3600.c b/arch/arm/mach-sall00/h3600.c
15 index 9788d3a..24c265¢ 100644

16

17

18€E -130,7 +130,7 6@ static int h3600_irda_set_power (struct device *dev, unsigned int state)
18 revarn 0;
20 3

25 if (speed < 4000000) {
26 c1r_n3600_egpio (IPAQ_EGPIO_IR FSEL):

.

281.6.1.9.997c34





_images/patche_dialog.png
X Format patch

© Save patches in diectory

O Ml patches from gerhardol@users noreply.github.com

To

Subject

Body

remotes
fp

> _gofesture/i5693-doc-3.00. Update source/pluginsist
feature/ui-refresh | _go/feature/ui-efresh Doc Ul touchup
tag

stash

commit split to stash, modify history

il pistory

fop explorer

Current branch: feature/i5693-doc-3.00

Gerhard C

~ Gerhard Olsson
* Gerhard Olsson

Drew Noakes
Gerhard Olzon
Gethard Olszon
Gethard Olszon

© Gerhard Olsson

Gerhard Olsson
Gerhard Olsson

2018-12-11 00:08:33
2018-12-11 0005152
2018-12-11 1528152

2018-12-10 22:15:

0181210005318
2018-12-10003308
2018-12-100030:10
008-12.09 233258
2018-12.092310:09

2813263
ag3867c
191893
eszensc
69221
#r2e237
4etbazo
228c222

5767560

Create patch(es)






_images/pull_dialog_rebase.png
X Fetch (F\dev\ge\gitedensions 4\GitEstensionsDoc)

ide help
4 100AL
other
remote
repository

current
' REMOTE

20 ancn O

postforfes
$AMA [irgn confics occur

Pullfrom
@© Remote -9

Our

% Manage remotes

hitps://github.com/gerhardol/GitextensionsDoc git

Branch.

Local branch feature/i5693-doc-3.00

Remote branch

Merge options
Ol Merge remote branch into current branch
® 4 Rebase current branch on top of remote branch, creates linear istory (use with caution)

© Do not merge,only fetch remote changes

Tag options
® Follow tagopt, f ot specified, fetch tags reachable from remote HEAD.
O Fetchnotag

Solve conflicts Stash changes | [ Auto stash






_images/pull_dialog_fetch.png
X Fetch (F\dev\ge\gitedensions 4\GitEstensionsDoc)

ide help

remote
repository

square =
it ranc

Pullfrom
@© Remote

Our itps://github.com/ gethardol/GitbxtensionsDoc.git

Branch.

Locobranch [ J

Remotebanch | 7]

Merge options
Ol Merge remote branch into current branch

O 4 Rebase current branch on top of remote branch, creates linear history (use with caution)
® Do ot merge, oy fetch remote changes

Tag options

® Follow tagopt, f ot specified, fetch tags reachable from remote HEAD.

O Fetchnotag

O Fetchalltags

[ Prune remote branches.

Solve conflicts Stash changes | [ Auto stash






_images/pull_dialog_merge.png
X Fetch (F\dev\ge\gitedensions 4\GitEstensionsDoc)

Hide help
Hover to see scenario when fast forward is possible.

merge commi

[ current

4 REMOTE
other

remote.
repository

| x BRI  Fo.

postforfes
A0 (g0 confics oceur

Pullfrom
@© Remote -9

Our itps://github.com/ gethardol/GitbxtensionsDoc.git

Branch.

Local branch feature/i5693-doc-3.00

Remote branch

Merge options
® 1. Merge remote branch into current branch

O 4 Rebase current branch on top of remote branch, creates linear history (use with caution)
O Do not merge, only fetch remote changes

Tag options

® Follow tagopt, f ot specified, fetch tags reachable from remote HEAD.

O Fetchnotag

[ Prune remote branches.

Solve conflicts Stash changes | [ Auto stash






_images/ssh_bash.png
Update to GE icons

ommit Diff Filetr G

NG
§ ssh-keygen -C "yourgemail.con” -t rsa
Generating public/private rsa key pair.

Enter file in which to save the key (/c/Users/ejgo/.ssh/id_rsa
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /c/Users/ejgo/.ssh/github_test_rsa.
Your public key has been saved in /c/Users/ejgo/-ssh/github_test_rsa.pub.
The key fingerprint is:

SHA256: GaipsHNHZZHPBSIrF4ahtpPuedncul iVNFHCBKOZKC your@email.con
The key's randomart image is:

[RsA 2048]-

/e/Users/eigos .ssh/github_test_rsa

loo o
looo. +
l.00.0 .
Jors. = .
|BBo.+ S
|*E0.

[5HA256]

NG






_images/ssh.png
98 Git Extensions 3.00.00.4409 Setup

Select the SSH client that wil be used by Git Extensions Gd
O openssH
‘OpenSSH is the Git default.
@® PuTTY (plink.exe)
PUTTY has better integration with Windows.
e | [ e






_images/stash_dialog.png
¥ Stash

o X
o WPt anl] S W] 164|005 T Ekusa -8
/ makecmd o=

" readme.md

+++ b/readne.nd

1 4To generate the documentation, you need to have Sph
22 4IF you have

2 + pip install -U sphinx

2+ + sphimx-build -b html -d build/doctrees source buil
25+

#8 HTML
Sinply run “make-html.cnd. You can also use “make-
file. The “make_and_start_Browser.cnd is an alias

WIP on i5693-doc-3.00: cfb269b Split Browse->
Browse, File History

7 Keep index Include untracked
P
e

<






_images/start_page.png
X Git Bxtensions

Stat  Dashboard Tools  Help

GIT, ‘/:EXTENSIQNS

4

) ey
= Gy
S

Clone GitHub repository

Contribute
< Develop
& Donate
B Translate

A lssues

Recent repositories.

Fidev\ge\gitextensions FAdev\gelrostyn Fidev\ge\gitextensions_251
master master release 251
Fidev\ge\gitextensions 4
SpArB70/_feature’sss3

e N
FAdev\ge\gitextensions_251 FAdev\ge\gitextensions \devge\gitextensions 4
release 251 master SpArB70/_feature’sss3

other N

E’r—.\d«\g
master

Lt

FAdengelroshn

master






_images/submodules_dialog.png
X Submodules

Externals/ICSharpC... | Up-to-date
Etemals/NBug | Up-to-date
Exterals/conemu-i...| Up-to-date
GitbxtensionsDoc | Modified

?
%
|






_images/submodules.png
X gitextensions 4 (feature/version-update) - Git Extensions

f Refresh

ot
(] File Bxplorer CtiSkit0.

Search: — i

= 5 S Remote reposioric.

v [ Submodules.

. Update il submodules

% Synchronize all submodules.

B Workees ,






_images/revision_links.png
¥ Settings - Revision links

Tipe t0ind Settings source:

¥ ok Extersons
7 General
> 55 Appearance
& Revisinnks
% Buid server integration
- st
) Hotkeys
X shellextenson
> i Advanced
S Detsied
s
S

> £ Plugis

O Effective O Local for current repository. @ {Bistribiited with ciivent reposiory O Global for al repositories.

3 GitHub - commit

o D oo thofistmach

Searchin M e [ pushRL

Search pattern (7 (@t@IRtp(s7L I~ OLIL gt

Revision data

Searchin [ Message  [] Local branch name  [/] Remote branch name

Search pattern (X7 <tpullrequest [p_P)el(featture) M oli_Did ]

Nested pattern [+ ]

Links

Caption URI
hitpd}






_images/revert_commit_dialog.png
X Revert commit

Revertthis commit:
3a40a20abd

Review changes
Author: Henk Westhuis

Commit date: 2 days ago (2018-12-13 12:40:34)
Branch(es)  n/a

Tag(e): n/a

[ Automatically create s commit

Revert this commit






_images/setting_branch.png
X Settings - Appearance

Type tofind Settings source: © Global for al repositries

<X Gittensions

7 General
% Appesrance ==
O Colors [ Show relative date instead of full date

Aa Fonts
‘Show current branch in Visual Studio

& Revisiontinks
7 Build serverintegration

Auto scale user interface when high DP i used

Truncate long filenames. None






_images/scope.png
48 Git Extensions 3.00.00.4409 Setup - X
o

Choose the instaltion scope and folder

O Install just for you [ejgo)
Gt Extensions 3.00.00.4409 wil b installed n 2 per-user folder and be
avaiable just for your user account. You do not need local Administrator
privleges.

@ Install for all users of this machine

Git Extensions 3.00.00.4409 wil be istalled in a per-machine folder by
defautt and be avaiable for al users. You can change the default
instalation folder. You must have local Adminitrator privieges.

Back Next Gancel






_images/settings.png
¥ Settings - Checkist

Settings source: ® Glabalforal repostres

<+ X GitBxtensions
£ General

2 Appearance

© colors

Aa Fonts
- Revision inks
7 Build server integration
. Scripts
© Hotkeys
X Shell etension
v {7 Advanced
 Confirmations
-4 Detailed
(B Browse repository wi
® Commitdislog

P ssH
v Gt
5 paths
7 Config
i Advanced
& Plugins
4§ Auto compile SubModu
O Bitbucket Server
# Delete obsolete branche,
2 Find large fles
©) Gittub
H Gource
© s Commit Hint
18 Periodic background fet
0 Proy Switcher
© statstcs

‘The checklist below validates the basic settings needed for GitExtensions to work properly.

0] Check sttings atstartup (disables sutomaticlly i sl setings e correct)

Changes on the selected page will be saved instantly.
Therefore the Cancel button does NOT revert any changes made.

Save and rescan






_images/open_repo.png
% Open local repository.

Dirctory  [FAdevige\giesension
Fidengalgtetensions
Fadenga\gitetensions 251
Fidenga\gitenensions 4
Fadenga\gitenensions 3
Fidenga\giteensions jislobr
Fidenga\gitetensions w2
Fide\ga\gitetensionsoc






_images/options.png
45/ Git Extensions 3.00.00.4409 Setup. - x
custom Setup = B
o

Select the way you want features to be nstaled.

Ciick the icons n the tree below to change the way features wil be instaled.

S-|Plugns
2~ | Desktop shortcut
Custom merge scrpts
Speling dictonaries

Transiations

Windows Explorer integration
‘Add instalation directory to PATH
Visual Studio extension v

HHEH

Browse...

oo | ] | oo






_images/note_editor.png
X F/dev/gc/gitextensions/.git/worktrees/gitextensions_ 4/NOTES_EDITMSG

"

R R R R e W

urite/edit the notes for the following object:

commit al77c46a2f0e7a42451d21e2f5638d9610e1b95
gpg: Signature made Thu Dec 13 08:10:44 2015

pe: using RSA key 4AEELSFS3AFDEB23
gpg: Can't check signature: No public key

Merge: ddebebc3c 226511772

Author: RussKie <RussKie@users.noreply.github.com>
Date:  Thu Dec 13 18:10:44 2015 +1100

Merge pull request #5878 from drewnoakes/fix-5859-blocking-avatar-download

Avoid blocking UI via WebClient.OpenReadTaskAsync

GitUT/Avatars/AvatarDonloader.cs | 19 ++ibbetbrrbbRbR

GitUT/UserControls/AvatarControl.cs | 2 ++
Plugins/Gource/GourceStart..cs (R
3 files changed, 24 insertions(+)






