

Git Extensions 2.51.05 Manual

	Git Extensions
	Features

	Video tutorials

	Links

	Getting Started
	Installation

	Installation (Linux) (2.5x only)

	Installation (macOS) (2.5x only)

	Settings

	Start Page

	Clone repository

	Clone SVN repository

	Clone Github repository

	Create new repository

	Settings
	Checklist

	Git

	Git Extensions

	Commit dialog

	Appearance

	Revision Links

	Colors

	Start Page

	Git Config

	Build server integration

	SSH

	Scripts

	Hotkeys

	Shell Extension

	Advanced

	Detailed

	Plugins

	Browse Repository
	View commit log

	Search or filter the commit history

	Single file history

	Blame

	Commit
	Commit changes

	Cherry pick commit

	Revert commit

	Stash changes

	Tag
	Create tag

	Delete tag

	Branches
	Create branch

	Checkout branch

	Merge branches

	Rebase branch

	Delete branch

	Patches
	Create patch

	Apply patches

	Remote feature
	Manage remote repositories

	Create SSH key

	Pull changes

	Push changes

	Merge Conflicts
	Handle merge conflicts

	Modify Git history
	Modify the last commit

	Modify an older commit

	Notes

	Submodules
	Manage submodules

	Add submodule

	Remove submodule

	Maintenance
	Compress Git database

	Recover lost objects

	Fix user names

	Ignore files

	Translations
	Change language

	Translate Git Extensions

	Integration
	Visual Studio

	Windows Explorer

	Command line
	Git Extensions command line

	Appendix
	Git Cheat Sheet

	Menu map

	Plugins
	List of the available plugins

	GitFlow

Git Extensions

Git Extensions is a toolkit aimed at making working with Git under Windows more intuitive.
The shell
extension will integrate in Windows Explorer and presents a context menu on files and directories.
There is also a Visual Studio extension to use Git from the Visual Studio IDE.

Features

	Windows Explorer integration for Git

	Feature rich user interface for Git

	32bit and 64bit support

	Visual Studio extension (2015-2017)

Specific in 2.5x releases:
* Visual Studio (2010 - 2015) add-in
* Runs under Linux or Mac OS X using Mono [http://www.mono-project.com]

Video tutorials

There are video tutorials for some basic functions on YouTube.

	Clone [http://www.youtube.com/watch?v=TlZXSkJGKF8]

	Commit changes [http://www.youtube.com/watch?v=B8uvje6X7lo]

	Push changes [http://www.youtube.com/watch?v=JByfXdbVAiE]

	Pull changes [http://www.youtube.com/watch?v=9g8gXPsi5Ko]

	Handle merge conflicts [http://www.youtube.com/watch?v=Kmc39RvuGM8]

	Install Git Extensions on Ubuntu 11.04 [http://www.youtube.com/watch?v=zk2MMUQuW4s]

Links

See the following links for the Git Extensions download page, source code and documentation.

	Download page: https://sourceforge.net/projects/gitextensions/

	Source Code: https://github.com/gitextensions/gitextensions

	Source Code Issue tracker: https://github.com/gitextensions/gitextensions/issues

	Documentation: https://github.com/gitextensions/GitExtensionsDoc

	Documentation Issue tracker: https://github.com/gitextensions/GitExtensionsDoc/issues

	Wiki: https://github.com/gitextensions/gitextensions/wiki

Please feel free to raise any issues with Git Extensions or its documentation at the appropriate Issue tracker link as shown above.

Getting Started

Installation

The single click Git Extensions installer can be found here [https://github.com/gitextensions/gitextensions/releases/latest].

[image: _images/install3.png]

[image: _images/install4.png]
Choose the options to install.

[image: _images/install5.png]
Choose the SSH client to use. PuTTY is the default because it has better Windows integration.

[image: _images/install6.png]

Installation (Linux) (2.5x only)

You can watch this video as a starting point: Install Git Extensions on Ubuntu 11.04 [http://www.youtube.com/watch?v=zk2MMUQuW4s]

For further help go to https://groups.google.com/forum/?fromgroups=#!forum/gitextensions

This section only covers mono installation, you should have git installed in your Linux at this point. Please refer to https://git-scm.com/download/linux

First, make sure you have the latest mono version on your Linux. This section will cover installation of Mono 4.6 on a Linux.

	Install mono latest version. You can always check for this here: http://www.mono-project.com/download/#download-lin

	If everything went okay, you should open your terminal and check mono version:

$ mono --version
Mono JIT compiler version 4.6.1 (Stable 4.6.1.5/ef43c15 Wed Oct 12 09:10:37 UTC 2016)
Copyright (C) 2002-2014 Novell, Inc, Xamarin Inc and Contributors. www.mono-project.com
 TLS: __thread
 SIGSEGV: altstack
 Notifications: epoll
 Architecture: amd64
 Disabled: none
 Misc: softdebug
 LLVM: supported, not enabled.
 GC: sgen

	Now download Git Extensions latest version from https://github.com/gitextensions/gitextensions/releases/latest. Remember to select the appropriate package otherwise you could have problems.

	Browse into the folder where you extracted the package and just run mono command, like the example below:

$ mono GitExtensions.exe

Installation (macOS) (2.5x only)

This section only covers mono installation, you should have git installed in your Mac at this point. Please refer to https://git-scm.com/download/mac

First, make sure you have the latest 32-bit mono version on your Mac. This section will cover installation of Mono 4.6 on a Mac.

	Download mono latest version. You can always check for this here: http://www.mono-project.com/download/#download-mac

	After you have completed the download, you will see a .dmg file. Double click it to open the package.

	Inside the .dmg file you will have MonoFramework-{version}.pkg. Double click to start the installation process.

	Follow the wizard until it’s completion.

	If everything went okay, you should open your terminal and check mono version:

$ mono --version
Mono JIT compiler version 4.6.1 (mono-4.6.0-branch-c8sr0/abb06f1 Fri Sep 23 19:24:23 EDT 2016)
Copyright (C) 2002-2014 Novell, Inc, Xamarin Inc and Contributors. www.mono-project.com
 TLS: normal
 SIGSEGV: altstack
 Notification: kqueue
 Architecture: x86
 Disabled: none
 Misc: softdebug
 LLVM: yes(3.6.0svn-mono-master/8b1520c)
 GC: sgen

	Now download Git Extensions latest version from https://github.com/gitextensions/gitextensions/releases/latest. Remember to select the appropriate package otherwise you could have problems.

	Browse into the folder where you extracted the package and just run mono command, like the example below:

$ mono GitExtensions.exe

This is the minimal setup you need in order to run Git Extensions.

Troubleshooting Mac Installation

	If your Git Extensions crashes with an exception that a font is missing (generic sans serif), you probably can fix this by installing Xquartz. This is a version of the X.Org X Windows System that runs on OS X. I am not sure what the side effects are. This can be installed from here: http://xquartz.macosforge.org/landing/

	If Git Extensions still crashes because it is unable to load a plugin, empty the plugins folder.

Settings

All settings will be verified when Git Extensions is started for the first time. If Git Extensions requires
any settings to be changed, the Settings dialog will be shown. All incorrect settings will be marked in red.
You can ask Git Extensions to try to fix the setting for you by clicking on it.
When installing Git Extensions for the first time (and you do not have Git already installed on your system),
you will normally be required to configure your username and email address.

The settings dialog can be invoked at any time by selecting Settings from the Tools menu option.

[image: _images/settings.png]
For further information see Settings.

Start Page

The start page contains the most common tasks, recently opened repositories and favourites. The left side of the start page (Common Actions
and Recent Repositories) is static. The right side of the page is where favourite repositories can be added, grouped under Category headings.

[image: _images/start_page.png]
Recent Repositories can be moved to favourites using the repository context menu. Choose Move to category / New category to create a new category
and add the repository to it, or you can add the repository to an existing category (e.g. ‘Currents’ as shown below).

[image: _images/move_to_category.png]
A context menu is available for both the category and the repositories listed underneath it.

Entries on Category context menu

	Move Up

	Move the category (and any repositories under it) higher on the page.

	Move Down

	Move the category (and any repositories under it) lower on the page.

	Remove

	Remove the category (and any repositories under it) from the page. Note: Git repositories are not
physically removed either locally or remotely.

	Edit

	Shows the Start Page settings window where both category and repository details
can be modified.

Entries on repository context menu

	Move to category

	Move the repository to a new or existing category.

	Move up

	Move the repository higher (within the category).

	Move down

	Move the repository lower (within the category).

	Remove

	Remove the repository from the category. Note: the repository is not physically removed either
locally or remotely.

	Edit

	Shows the Start Page settings window where both category and repository details
can be modified.

	Show current
branch

	Toggles the display of the branch name next to the repository name. This identifies the currently
checked out branch for the repository.

To open an existing repository, simply click the link to the repository under Recent Repositories or within the Categories that you have set up, or
select Open repository (from where you can select a repository to open from your local file system).

To create a new repository, one of the following options under Common Actions can be selected.

Clone repository

You can clone an existing repository using this option. It displays the following dialog.

[image: _images/clone.png]
The repository you want to clone could be on a network share or could be a repository that is accessed through an internet
or intranet connection. Depending on the protocol (http or ssh) you might need to load a SSH key into PuTTY. You also need to specify where
the cloned repository will be created and the initial branch that is checked out. If the cloned repository contains submodules, then these
can be initialised using their default settings if required.

There are two different types of repositories you can create when making a clone. A personal repository contains the complete
history and also contains a working copy of the source tree. A central repository is used as a public repository where
developers push the changes they want to share with others to. A central repository contains the complete history but does not
have a working directory like personal repositories.

Clone SVN repository

You can clone an existing SVN repository using this option, which creates a Git repository from the SVN repository you specify.
For further information refer to the Pro Git book [https://git-scm.com/book/en/v2/Git-and-Other-Systems-Migrating-to-Git].

Clone Github repository

This option allows you to

	Fork a repository on GitHub so it is created in your personal space on GitHub.

	Clone any repositories on your personal space on GitHub so that it becomes a local repository on your machine.

You can see your own personal repositories on GitHub, and also search for repositories using the Search for repositories tab.

[image: _images/github_clone.png]

Create new repository

When you do not want to work on an existing project, you can create your own repository using this option.

[image: _images/new_repository.png]
Select a directory where the repository is to be created. You can choose to create a Personal repository or a Central repository.

A personal repository looks the same as a normal working directory but has a directory named .git at the root level
containing the version history. This is the most common repository.

Central repositories only contain the version history. Because a central repository has no working directory you cannot
checkout a revision in a central repository. It is also impossible to merge or pull changes in a central repository. This
repository type can be used as a public repository where developers can push changes to or pull changes from.

Settings

The settings dialog can be invoked at any time by selecting Settings from the Tools menu option.

[image: _images/settings.png]
The following buttons are always available on any page of the Settings dialog. Sometimes the Cancel
button has no effect for the page - this will be noted on the page in the area next to the buttons.

	Button

	Description

	OK

	Save any entered changes made in any settings page and close the Settings dialog.

	Cancel

	Any entered changes in any settings page are not saved. The Settings dialog is closed.

	Apply

	Any entered changes in any settings page are saved.

Settings that are specific to Git Extensions and apply globally will be stored in a file called GitExtensions.settings
either in the user’s application data path or with the program.
The location is dependent on the IsPortable setting in the GitExtensions.exe.config file that is with the program.
Settings that are specific to Git Extensions but apply to only the current repository will be stored in a file of the same
name, GitExtensions.settings, but in either the root folder of the repository or the .git folder of the repository,
depending on whether or not they are distributed with that repository.
The settings that are used by Git are stored in the configuration files of Git. The global settings are stored in the file called
.gitconfig in the user directory. The local settings are stored in the .git\config file of the repository.

Checklist

This page is a visual overview of the minimal settings that Git Extensions requires to work properly. Any items highlighted in red should
be configured by clicking on the highlighted item.

This page contains the following settings and buttons.

	
Check settings at startup

	Forces Git Extensions to re-check the minimal set of required settings the next time Git Extensions is started.
If all settings are ‘green’ this will be automatically unchecked.

	
Save and rescan

	Saves any setting changes made and re-checks the settings to see if the minimal requirements are now met.

Git

This page contains the settings needed to access git repositories. The repositories will be accessed using external
tools. For Windows usually “Git for Windows” or Cygwin are used. Git Extensions will try to configure these settings automatically.

	
Git

	
	
Command used to run git (git.cmd or git.exe)

	Needed for Git Extensions to run Git commands. Set the full command used
to run git (“Git for Windows” or Cygwin). Use the Browse button to
find the executable on your file system.

	
Path to Linux tools (sh).

	A few linux tools are used by Git Extensions. When Git for Windows is
installed, these tools are located in the bin directory of Git for
Windows. Use the Browse button to find the directory on your file
system. Leave empty when it is in the path.

	
Environment

	
	
Change HOME

	This button opens a dialog where the HOME directory can be changed.

The global configuration file used by git will be put in the HOME directory. On some systems the home directory is not set
or is pointed to a network drive. Git Extensions will try to detect the optimal setting for your environment. When there is
already a global git configuration file, this location will be used. If you need to relocate the home directory for git,
click the Change HOME button to change this setting. Otherwise leave this setting as the default.

Git Extensions

This page contains general settings for Git Extensions.

	
Performance

	
	
Show number of changed files on commit button

	When enabled, the number of pending commits are shown on the toolbar as a figure in parentheses next to the Commit button.
Git Extensions must be stopped and restarted to activate changes to this option.
Turn this off if you experience slowdowns.

	
Show current working directory changes in revision graph

	When enabled, two extra revisions are added to the revision graph.
The first shows the current working directory status. The second shows the staged files.

	
Use FileSystemWatcher to check if index is changed

	Using the FileSystemWatcher to check index state improves the performance in some cases.

	
Show stash count on status bar in browse window

	When you use the stash a lot, it can be useful to show the number of stashed items on the toolbar.
This option causes serious slowdowns in large repositories and is turned off by default.

	
Check for uncommitted changes in checkout branch dialog

	Git Extensions will not allow you to checkout a branch if you have uncommitted changes on the current branch.
If you select this option, Git Extensions will display a dialog where you can decide
what to do with uncommitted changes before swapping branches.

	
Limit number of commits that will be loaded in list at start-up

	This number specifies the maximum number of commits that Git Extensions will load when it is started.
These commits are shown in the Commit Log window. To see more commits than are loaded,
then this setting will need to be adjusted and Git Extensions restarted.

	
Behaviour

	
	
Close Process dialog when process succeeds

	When a process is finished, close the process dialog automatically.
Leave this option off if you want to see the result of processes.
When a process has failed, the dialog will automatically remain open.

	
Show console window when executing git process

	Git Extensions uses command line tools to access the git repository.
In some environments it might be useful to see the command line dialog when a process is executed.
An option on the command line dialog window displayed allows this setting to be turned off.

	
Use patience diff algorithm

	Use the Git ‘patience diff’ algorithm instead of the default.
This algorithm is useful in situations where two files have diverged significantly and the default algorithm
may become ‘misaligned’, resulting in a totally unusable conflict file.

	
Include untracked files in stash

	If checked, when a stash is performed as a result of any action except a manual stash request,
e.g. checking out a new branch and requesting a stash then any files not tracked by git will also be saved to the stash.

	
Follow renames in file history (experimental)

	Try to follow file renames in the file history.

	
Follow exact renames and copies only

	Follow file renames and copies for which similarity index is 100%. That is when a file
is renamed or copied and is commited with no changes made to its content.

	
Open last working dir on startup

	When starting Git Extensions, open the last used repository (bypassing the Start Page).

	
Play Special Startup Sound

	Play a sound when starting Git Extensions. It will put you in a good moooooood!

	
Default clone destination

	Git Extensions will pre-fill destination directory input with value of this setting on any form used to perform repository clone.

	
Revision grid quick search timeout [ms]

	The timeout (milliseconds) used for the quick search feature in the revision graph.
The quick search will be enabled when you start typing and the revision graph has the focus.

	
Email settings for sending patches

	
	
SMTP server name

	SMTP server to use for sending patches.

	
Port

	SMTP port number to use.

	
Use SSL/TLS

	Check this box if the SMTP server uses SSL or TLS.

Commit dialog

This page contains settings for the Git Extensions Commit dialog.

	
Behaviour

	
	
Provide auto-completion in commit dialog

	Enables auto-completion in commit dialog message box. Auto-completion words
are taken from the changed files shown by the commit dialog. For each file type
there can be configured a regular expression that decides which words should be
considered as candidates for auto-completion. The default regular expressions included
with Git Extensions can be found here: https://github.com/gitextensions/gitextensions/blob/master/GitExtensions/AutoCompleteRegexes.txt
You can override the default regular expressions by creating an AutoCompleteRegexes.txt file in
the Git Extensions installation directory.

	
Show errors when staging files

	If an error occurs when files are staged (in the Commit dialog),
then the process dialog showing the results of the git command is shown if this setting is checked.

	
Ensure the second line of commit message is empty

	Enforces the second line of a commit message to be blank.

	
Compose commit messages in Commit dialog

	If this is unchecked, then commit messages cannot be entered in the commit dialog.
When the Commit button is clicked, a new editor window is opened where the commit message can be entered.

	
Number of previous messages in commit dialog

	The number of commit messages, from the top of the current branch,
that will be made available from the Commit message combo box on the Commit dialog.

	
Remember 'Amend commit' checkbox on commit form close

	Remembers the state of the ‘Amend commit’ checkbox when the ‘Commit dialog’ is being closed.
The remembered state will be restored on the next ‘Commit dialog’ creation.
The ‘Amend commit’ checkbox is being unchecked after each commit.
So, when the ‘Commit dialog’ is being closed automatically after commiting changes,
the ‘Amend commit’ checkbox is going to be unchecked first and its state will be saved after that.
Therefore the checked state is remembered only if the ‘Commit dialog’ is being closed
by an user without commiting changes.

	
Show additional buttons in commit button area

	Tick the boxes in this sub-group for any of the additional buttons that you wish
to have available below the commit button. These buttons are considered additional
to basic functionality and have consequences if you should click them accidentally,
including resetting unrecorded work.

Appearance

This page contains settings that affect the appearance of the application.

	
General

	
	
Show relative date instead of full date

	Show relative date, e.g. 2 weeks ago, instead of full date.
Displayed on the commit tab on the main Commit Log window.

	
Show current branch in Visual Studio

	Determines whether or not the currently checked out branch is displayed on
the Git Extensions toolbar within Visual Studio.

	
Auto scale user interface when high DPI is used

	Automatically resize controls and their contents according to the current system resolution of the display, measured in dots per inch (DPI).

	
Truncate long filenames

	This setting affects the display of filenames in a component of a window
e.g. in the Diff tab of the Commit Log window. The options that can be
selected are:

	None - no truncation occurs; a horizontal scroll bar is used to see the whole filename.

	Compact - no horizontal scroll bar. Filenames are truncated at both start and end to fit into the width of the display component.

	Trimstart - no horizontal scroll bar. Filenames are truncated at the start only.

	FileNameOnly - the path is always removed, leaving only the name of the file, even if there is space for the path.

	
Author images

	
	
Get author image from gravatar.com

	If checked, gravatar [http://gravatar.com/] will be accessed to
retrieve an image for the author of commits. This image is displayed on
the commit tab on the main Commit Log window.

	
Image size

	The display size of the user image.

	
Cache images

	The number of days to elapse before gravatar is checked for any changes to an authors image.

	
No image service

	If the author has not set up their own image, then gravatar can return an image based on one of these services.

	
Clear image cache

	Clear the cached avatars.

	
Fonts

	
	
Code font

	Change the font used for the display of file contents.

	
Application font

	Change the font used on Git Extensions windows and dialogs.

	
Commit font

	Change the font used for entering a commit message in the Commit dialog.

	
Language

	
	
Language (restart required)

	Choose the language for the Git Extensions interface.

	
Dictionary for spelling checker

	Choose the dictionary to use for the spelling checker in the Commit dialog.

Revision Links

You can configure here how to convert parts of a revision data into clickable links. These links will be located under the commit message on the Commit
tab in the Related links section.

[image: _images/related_links_location.png]
The most common case is to convert an issue number given as a part of commit message into a link to the coresponding issue-tracker page.
The screenshot below shows an example configuration for GitHub issues.

[image: _images/revision_links.png]

	
Categories

	Lists all the currently defined Categories. Click the Add button to
add a new empty Category. The default name is ‘new’. To remove a Category
select it and click the Remove button.

	
Name

	This is the Category name used to match the same categories defined on
different levels of the Settings.

	
Enabled

	Indicates whether the Category is enabled or not. Disabled categories are
skipped while creating links.

	
Remote data

	It is possible to use data from remote’s URL to build a link. This way, links can be defined globally for all repositories sharing the same URL schema.

	
Use remotes

	Regex to filter which remotes to use. Leave blank to create links not depending on remotes.
If full names of remotes are given then matching remotes are sorted by its position in the given Regex.

	
Only use the first match

	Check if you want to create links only for the first matching remote.

	
Search in

	Define whether to search in URL, Push URL or both.

	
Revision data

	
	
Search in

	Define which parts of the revision should be searched for matches.

	
Search pattern

	Regular expression used for matching text in the chosen revision parts.
Each matched fragment will be used to create a new link. More than one
fragment can be used in a single link by using a capturing group.
Matches from the Remote data group go before matches from the Revision data group.
A capturing group value can be passed to a link by using zero-based indexed
placeholders in a link format definition e.g. {0}.

	
Nested pattern

	Nested pattern can be used when only a part of the text matched by the Search pattern
should be used to format a link. When the Nested pattern is empty,
matches found by the Search pattern are used to create links.

	
Links: Caption/URI

	List of links to be created from a single match. Each link consists of
the Caption to be displayed and the URI to be opened when the link
is clicked on. In addition to the standard zero-based indexed placeholders,
the %COMMIT_HASH% placeholder can be used to put the commit’s hash into
the link. For example: https://github.com/gitextensions/gitextensions/commit/%COMMIT_HASH%

Colors

This page contains settings to define the colors used in the application.

	
Revision graph

	
	
Multicolor branches

	Displays branch commits in different colors if checked.
If unchecked, all branches are shown in the same color.
This color can be selected.

	
Striped branch change

	When a new branch is created from an existing branch, the common part of the history is shown in a ‘hatch’ pattern.

	
Draw branch borders

	Outlines branch commits in a black border if checked.

	
Draw non relatives graph gray

	Show commit history in gray for branches not related to the current branch.

	
Draw non relatives text gray

	Show commit text in gray for branches not related to the current branch.

	
Highlight authored revisions

	Highlight all the revisions authored by the same author as the author of the currently selected revision (matched by email).
If there is no revision selected, then the current user’s email is used to match revisions to be highlighted.

	
Color tag

	Color to show tags in.

	
Color branch

	Color to show branch names in.

	
Color remote branch

	Color to show remote branch names in.

	
Color other label

	Color to show other labels in.

	
Color authored revisions

	Color to show authored revisions in.

	
Application Icon

	
	
Icon style

	Change icons. Useful for recognising various open instances.

	
Icon color

	Changes color of the selected icons.

	
Difference View

	
	
Color removed line

	Highlight color for lines that have been removed.

	
Color added line

	Highlight color for lines that have been added.

	
Color removed line highlighting

	Highlight color for characters that have been removed in lines.

	
Color added line highlighting

	Highlight color for characters that have been added in lines.

	
Color section

	Highlight color for a section.

Start Page

This page allows you to add/remove or modify the Categories and repositories that will appear on the Start Page when Git Extensions is
launched. Per Category you can either configure an RSS feed or add repositories. The order of both Categories, and repositories within
Categories, can be changed using the context menus in the Start Page. See Start Page for further details.

	
Categories

	Lists all the currently defined Categories. Click the Add button to add a new empty Category.
The default name is ‘new’. To remove a Category select it and click Remove.
This will delete the Category and any repositories belonging to that Category.

	
Caption

	This is the Category name displayed on the Start Page.

	
Type

	Specify the type: an RSS feed or a repository.

	
RSS Feed

	Enter the URL of the RSS feed.

	
Path/Title/Description

	For each repository defined for a Category, shows the path, title and
description. To add a new repository, click on a blank line and type the
appropriate information. The contents of the Path field are shown on the
Start Page as a link to your repository if the Title field is blank. If
the Title field is non-blank, then this text is shown as the link to your
repository. Any text in the Description field is shown underneath the
repository link on the Start Page.

An RSS Feed can be useful to follow repositories on GitHub for example. See this page on GitHub: https://help.github.com/articles/about-your-profile/.
You can also follow commits on public GitHub repositories by:

	In your browser, navigate to the public repository on GitHub.

	Select the branch you are interested in.

	Click on the Commits tab.

	You will find a RSS icon next to the words “Commit History”.

	Copy the link

	Paste the link into the RSS Feed field in the Settings - Start Page as shown above.

Your Start Page will then show each commit - clicking on a link will open your browser and take you to the commit on GitHub.

Git Config

This page contains some of the settings of Git that are used by and therefore can be changed from within Git Extensions.

If you change a Git setting from the Git command line using git config then the same change in setting can be seen inside
Git Extensions. If you change a Git setting from inside Git Extensions then that change can be seen using git config --get.

Git configuration can be global or local configuration. Global configuration applies to all repositories. Local configuration overrides
the global configuration for the current repository.

	
User name

	User name shown in commits and patches.

	
User email

	User email shown in commits and patches.

	
Editor

	Editor that git.exe opens (e.g. for editing commit message).
This is not used by Git Extensions, only when you call git.exe from the command line.
By default Git will use the built in editor.

	
Mergetool

	Merge tool used to solve merge conflicts. Git Extensions will search for common merge tools on your system.

	
Path to mergetool

	Path to merge tool. Git Extensions will search for common merge tools on your system.

	
Mergetool command

	Command that Git uses to start the merge tool. Git Extensions will try to set this automatically when a merge tool is chosen.
This setting can be left empty when Git supports the mergetool (e.g. kdiff3).

	
Keep backup (.orig) after merge

	Check to save the state of the original file before modifying to solve merge conflicts. Refer to Git configuration setting `mergetool.keepBackup`.

	
Difftool

	Diff tool that is used to show differences between source files. Git Extensions will search for common diff tools on your system.

	
Path to difftool

	The path to the diff tool. Git Extensions will search for common diff tools on your system.

	
DiffTool command

	Command that Git uses to start the diff tool. This setting should only be filled in when Git doesn’t support the diff tool.

	
Path to commit template

	A path to a file whose contents are used to pre-populate the commit message in the commit dialog.

	
Line endings

	
	
Checkout/commit radio buttons

	Choose how git should handle line endings when checking out and checking in files.
Refer to https://help.github.com/articles/dealing-with-line-endings/#platform-all

	
Files content encoding

	The default encoding for files content.

Build server integration

This page allows you to configure the integration with build servers. This allows the build status of each commit
to be displayed directly in the revision log, as well as providing a tab for direct access to the Build Server
build report for the selected commit.

	
General

	
	
Enable build server integration

	Check to globally enable/disable the integration functionality.

	
Show build status summary in revision log

	Check to show a summary of the build results with the commits in the main revision log.

	
Build server type

	Select an integration target.

	
AppVeyor

	
	
Account name

	AppVeyor account name. You don’t have to enter it if the projects you want to query for build status are public.

	
API token

	AppVeyor API token. Requiered if the Account name is entered.
See https://ci.appveyor.com/api-token

	
Project(s) name(s)

	Projects names separated with ‘|’, e.g. gitextensions/gitextensions|jbialobr/gitextensions

	
Display tests results in build status summary for every build result

	Include tests results in the build status summary for every build result.

	
Display GitHub pull requests builds

	Display build status for revisions which GitHub pull requests are based on.
If you have fetched revisions from other users’ forks, GitExtensions will show
a build status for those revisions for which a build was performed as a part of
a pull request’s check.

	
GitHubToken

	Token to allow access the GitHub API. You can generate your private token at https://github.com/settings/tokens

	
Jenkins

	
	
Jenkins server URL

	Enter the URL of the server (and port, if applicable).

	
Project name

	Enter the name of the project which tracks this repository in Jenkins. Separate project names with “|”. Multi-branch pipeline projects are supported by adding “?m” to the project name.

	
TeamCity

	
	
TeamCity server URL

	Enter the URL of the server (and port, if applicable).

	
Project name

	Enter the name of the project which tracks this repository in TeamCity. Multiple project names can be entered separated by the | character.

	
Build Id Filter

	Enter a regexp filter for which build results you want to retrieve in the case that your build project creates multiple builds. For example, if your project includes both devBuild and docBuild you may wish to apply a filter of “devBuild” to retrieve the results from only the program build.

	
Team Foundation

	
	
Tfs server (Name or URL)

	Enter the URL of the server (and port, if applicable).

	
Team collection name

	

	
Project name

	Enter the name of the project which tracks this repository in Tfs.

	
Build definition name

	Use first found if left empty.

SSH

This page allows you to configure the SSH client you want Git to use. Git Extensions is optimized for PuTTY. Git Extensions
will show command line dialogs if you do not use PuTTY and user input is required (unless you have configured SSH to use authentication
with key instead of password). Git Extensions can load SSH keys for PuTTY when needed.

	
Specify which ssh client to use

	
	
PuTTY

	Use PuTTY as SSH client.

	
OpenSSH

	Use OpenSSH as SSH client.

	
Other ssh client

	Use another SSH client. Enter the path to the SSH client you wish to use.

	
Configure PuTTY

	
	
Path to plink.exe

	Enter the path to the plink.exe executable.

	
Path to puttygen

	Enter the path to the puttygen.exe executable.

	
Path to pageant

	Enter the path to the pageant.exe executable.

	
Automatically start authentication

	If an SSH key has been configured, then when accessing a remote repository the key will automatically be used by the SSH client if this is checked.

Scripts

This page allows you to configure specific commands to run before/after Git actions or to add a new command to the User Menu.
The top half of the page summarises all of the scripts currently defined. If a script is selected from the summary, the bottom
half of the page will allow modifications to the script definition.

A hotkey can also be assigned to execute a specific script. See Hotkeys.

	
Add

	Adds a new script. Complete the details in the bottom half of the screen.

	
Remove

	Removes a script.

	
Up/Down Arrows

	Changes order of scripts.

	
Name

	The name of the script.

	
Enabled

	If checked, the script is active and will be performed at the appropriate time (as determined by the On Event setting).

	
Ask for confirmation

	If checked, then a popup window is displayed just before the script is run to confirm whether or not the script is to be run.
Note that this popup is not displayed when the script is added as a command to the User Menu (On Event setting is ShowInUserMenuBar).

	
Run in background

	If checked, the script will run in the background and Git Extensions will return to your control without waiting for the script to finish.

	
Add to revision grid context menu

	If checked, the script is added to the context menu that is displayed when right-clicking on a line in the Commit Log page.

	
Is PowerShell

	If checked, the command is started through a powershell.exe process.
If the Run in background is checked, the powershell console is closed after finishing. If not,
the powershell console is left for the user to close it manually.

	
Command

	Enter the command to be run. This can be any command that your system can run e.g. an executable program,
a .bat script, a Python command, etc. Use the Browse button to find the command to run.

	
Arguments

	Enter any arguments to be passed to the command that is run.
The Help button displays items that will be resolved by Git Extensions before
executing the command e.g. {cBranch} will resolve to the currently checked out branch,
{UserInput} will display a popup where you can enter data to be passed to the command when it is run.

	
On Event

	Select when this command will be executed, either before/after certain Git commands, or displayed on the User Menu bar.

	
Icon

	Select an icon to be displayed in a menu item when the script is marked to be shown in the user menu bar.

Hotkeys

This page allows you to define keyboard shortcuts to actions when specific pages of Git Extensions are displayed.
The HotKeyable Items identifies a page within Git Extensions. Selecting a Hotkeyable Item displays the list of
commands on that page that can have a hotkey associated with them.

The Hotkeyable Items consist of the following pages

	Commit: the page displayed when a Commit is requested via the Commit User Menu button or the Commands/Commit menu option.

	Browse: the Commit Log page (the page displayed after a repository is selected from the Start Page).

	RevisionGrid: the list of commits on the Commit Log page.

	FileViewer: the page displayed when viewing the contents of a file.

	FormMergeConflicts: the page displayed when merge conflicts are detected that need correcting.

	Scripts: shows scripts defined in Git Extensions and allows shortcuts to be assigned. Refer Scripts.

	
Hotkey

	After selecting a Hotkeyable Item and the Command, the current keyboard shortcut associated with the command is displayed here.
To alter this shortcut, click in the box where the current hotkey is shown and press the new keyboard combination.

	
Apply

	Click to apply the new keyboard combination to the currently selected Command.

	
Clear

	Sets the keyboard shortcut for the currently selected Command to ‘None’.

	
Reset all Hotkeys to defaults

	Resets all keyboard shortcuts to the defaults (i.e. the values when Git Extensions was first installed).

Shell Extension

When installed, Git Extensions adds items to the context menu when a file/folder is right-clicked within Windows Explorer. One of these items
is Git Extensions from which a further (cascaded) menu can be opened. This settings page determines which items will appear on that cascaded
menu and which will appear in the main context menu. Items that are checked will appear in the cascaded menu.

To the right side of the list of check boxes is a preview that shows you how the Git Extensions menu items will be arranged with
your current choices.

By default, what is displayed in the context menu also depends on what item is right-clicked in Windows Explorer; a file or a folder
(and whether the folder is a Git repository or not). If you want Git Extensions to always include all of its context menu items,
check the box Always show all commands.

Advanced

This page allows advanced settings to be modified. Clicking on the ‘+’ symbol on the tree of settings will display further settings.
Refer Confirmations.

	
Checkout

	
	
Always show checkout dialog

	Always show the Checkout Branch dialog when swapping branches.
This dialog is normally only shown when uncommitted changes exist on the current branch

	
Use last chosen "local changes" action as default action.

	This setting works in conjunction with the ‘Git Extensions/Check for uncommitted changes in checkout branch dialog’ setting.
If the ‘Check for uncommitted changes’ setting is checked, then the Checkout Branch dialog is shown only if this setting is unchecked.
If this setting is checked, then no dialog is shown and the last chosen action is used.

	
General

	
	
Don’t show help images

	In the Pull, Merge and Rebase dialogs, images are displayed by default to explain what happens
with the branches and their commits and the meaning of LOCAL, BASE and REMOTE (for resolving merge conflicts)
in different merge or rebase scenarios. If checked, these Help images will not be displayed.

	
Always show advanced options

	In the Push, Merge and Rebase dialogs, advanced options are hidden by default and shown only after you click a link or checkbox.
If this setting is checked then these options are always shown on those dialogs.

	
Check for release candidate versions

	Include release candidate versions when checking for a newer version.

	
Use Console Emulator for console output in command dialogs

	Using Console Emulator for console output in command dialogs may be useful the running
command requires an user input, e.g. push, pull using ssh, confirming gc.

	
Auto normalise branch name

	Controls whether branch name should be automatically normalised as per git branch
naming rules. If enabled, any illegal symbols will be replaced with the replacement symbol of your choice.

	
Commit

	
	
Push forced with lease when Commit & Push action is performed with Amend option checked

	In the Commit dialog, users can commit and push changes with one click. However, if changes are meant to amend
an already pushed commit, a standard push action will be rejected by the remote server. If this option is
enabled, a push action with --force-with-lease switch will be performed instead. The --force-with-lease
switch will be added only when the Amend option is checked.

Confirmations

This page allows you to turn off certain confirmation popup windows.

	
Don’t ask to confirm to

	
	
Amend last commit

	If checked, do not display the popup warning about
the rewriting of history when you have elected to amend the last committed change.

	
Commit when no branch is currently checked out

	When commiting changes and there is no branch currently being checked out, then
GitExtensions warns you and proposes to checkout or create a branch. Enable this
option to continue working with no warning.

	
Apply stashed changes after successful pull

	In the Pull dialog, if Auto stash is checked, then any changes will be stashed before the pull is performed.
Any stashed changes are then re-applied after the pull is complete.
If this setting is checked, the stashed changes are applied with no confirmation popup.

	
Apply stashed changes after successful checkout

	In the Checkout Branch dialog, if Stash is checked, then any changes will be stashed before the branch is checked out.
If this setting is checked, then the stashed changes will be automatically re-applied
after successful checkout of the branch with no confirmation popup.

	
Add a tracking reference for newly pushed branch

	When you push a local branch to a remote and it doesn’t have a tracking reference,
you are asked to confirm whether you want to add such a reference. If this setting is checked,
a tracking reference will always be added if it does not exist.

	
Push a new branch for the remote

	When pushing a new branch that does not exist on the remote repository,
a confirmation popup will normally be displayed. If this setting is checked,
then the new branch will be pushed with no confirmation popup.

	
Update submodules on checkout

	When you check out a branch from a repository that has submodules,
you will be asked to update the submodules. If this setting is checked,
the submodules will be updated without asking.

	
Resolve conflicts

	If enabled, then when conflicts are detected GitExtensions will start the Resolve conflicts dialog
automatically without any prompt.

	
Commit changes after conflicts have been resolved

	Enable this option to start the Commit dialog automatically after all conflicts have been resolved.

	
Confirm for the second time to abort a merge

	When aborting a merge, rebase or other operation that caused conflicts to be resolved,
an user is warned about the consequences of aborting and asked if he/she wants to continue.
If the user chooses to continue the aborting operation, then he/she is asked for the second time
if he/she is sure that he/she wants to abort. Enable this option to skip this second confirmation.

Detailed

This page allows detailed settings to be modified. Clicking on the ‘+’ symbol on the tree of settings will display further settings.

	
Push window

	
	
Get remote branches directly from the remote

	Git caches locally remote data. This data is updated each time a fetch operation is performed.
For a better performance GitExtensions uses the locally cached remote data to fill out controls
on the Push dialog. Enable this option if you want GitExtensions to use remote data recieved
directly from the remote server.

	
Merge window

	
	
Add log messages

	If enabled, then in addition to branch names, git will populate the log message with one-line descriptions
from at most the given number actual commits that are being merged.
See https://git-scm.com/docs/git-merge#git-merge—logltngt [https://git-scm.com/docs/git-merge#git-merge---logltngt]

Browse repository window

	
Show revision details next to the revision list

	Enable to move the commit details panel from the tab pages at the bottom of the window
to the top right corner.

[image: _images/rev-details-on-the-right.png]

	
Console emulator

	
	
Show the Console tab

	Show the Console tab in the Browse Repository window.

	
Console settings

	
	
Console style

	Choose one of the predefined ConEmu schemes. See http://conemu.github.io/en/SettingsColors.html.

	
Shell to run

	Choose one of the predefined terminals.

	
Font size

	Console font size.

Diff Viewer

	
Remember the 'Ignore whitespaces' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Ignore whitespaces’ preference.
Use the remembered value the next time GitExtensions is opened.

	
Remember the 'Show nonprinting characters' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Show nonprinting characters’ preference.
Use the remembered value the next time GitExtensions is opened.

	
Remember the 'Show entire file' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Show entire file’ preference.
Use the remembered value the next time GitExtensions is opened.

	
Remember the 'Number of context lines' preference

	Remember in the GitExtensions settings the latest chosen value of the ‘Number of context lines’ preference.
Use the remembered value the next time GitExtensions is opened.

	
Omit uninteresting changes from combined diff

	Includes git –cc switch when generating a diff. See https://git-scm.com/docs/git-diff-tree#git-diff-tree—cc [https://git-scm.com/docs/git-diff-tree#git-diff-tree---cc]

	
Open Submodule Diff in separate window

	If enabled then double clicking on a submodule in the Diff file list opens a new instance of
GitExtensions with the submodule as the selectect repository. If disabled, the File history
window is opened for the double clicked submodule.

	
Show file differences for all parents in browse dialog

	Enable this option to see diff against each of the revision parents, combined diff including.

Plugins

Plugins provide extra functionality for Git Extensions. This list is incomplete.

Auto compile SubModules

This plugin proposes (confirmation required) that you automatically build submodules after they are updated via the GitExtensions Update submodules command.

	
Enabled

	Enter true to enable the plugin, or false to disable.

	
Path to msbuild.exe

	Enter the path to the msbuild.exe executable.

	
msbuild.exe arguments

	Enter any arguments to msbuild.

Periodic background fetch

This plugin keeps your remote tracking branches up-to-date automatically by fetching periodically.

	
Arguments of git command to run

	Enter the git command and its arguments into the edit box.
The default command is fetch --all, which will fetch all branches from all remotes.
You can modify the command if you would prefer, for example, to fetch only a specific remote, e.g. fetch upstream.

	
Fetch every (seconds)

	Enter the number of seconds to wait between each fetch. Enter 0 to disable this plugin.

	
Refresh view after fetch

	If checked, the commit log and branch labels will be refreshed after the fetch.
If you are browsing the commit log and comparing revisions you may wish
to disable the refresh to avoid unexpected changes to the commit log.

	
Fetch all submodules

	If checked, also perform git fetch –all recursively on all configured
submodules as part of the periodic background fetch.

Create local tracking branches

This plugin will create local tracking branches for all branches on a remote repository.
The remote repository is specified when the plugin is run.

Delete obsolete branches

This plugin allows you to delete obsolete branches i.e. those branches
that are fully merged to another branch.
It will display a list of obsolete branches for review before deletion.

	
Delete obsolete branches older than (days)

	Select branches created greater than the specified number of days ago.

	
Branch where all branches should be merged

	The name of the branch where a branch must have been merged into to be considered obsolete.

Find large files

Finds large files in the repository and allows you to delete them.

	
Find large files bigger than (Mb)

	Specify what size is considered a ‘large’ file.

Gerrit Code Review

The Gerrit plugin provides integration with Gerrit for GitExtensions.
This plugin has been based on the git-review tool.

For more information see: https://www.gerritcodereview.com/

GitFlow

The GitFlow plugin provides high-level repository operations for Vincent Driessen’s branching model

For more information see: https://github.com/nvie/gitflow

Github

This plugin will create an OAuth token so that some common GitHub actions can be integrated with Git Extensions.

For more information see: https://github.com/

	
OAuth Token

	The token generated and retrieved from GitHub.

Impact Graph

This plugin shows in a graphical format the number of commits and counts of changed
lines in the repository performed by each person who has committed a change.

Statistics

This plugin provides various statistics (and a pie chart) about the current Git repository.
For example, number of commits by author, lines of code per language.

	
Code files

	Specifies extensions of files that are considered code files.

	
Directories to ignore (EndsWith)

	Ignore these directories when calculating statistics.

	
Ignore submodules

	Ignore submodules when calculating statistics (true/false).

Gource

Gource is a software version control visualization tool.

For more information see: http://gource.io/

	
Path to "gource"

	Enter the path to the gource software.

	
Arguments

	Enter any arguments to gource.

Proxy Switcher

This plugin can set/unset the value for the http.proxy git config file key as per the settings entered here.

	
Username

	The user name needed to access the proxy.

	
Password

	The password attached to the username.

	
HttpProxy

	Proxy Server URL.

	
HttpProxyPort

	Proxy Server port number.

Release Notes Generator

This plugin will generate ‘release notes’.
This involves summarising all commits between the specified from and to commit expressions
when the plugin is started. This output can be copied to the clipboard in various formats.

Bitbucket Server

If your repository is hosted on Atlassian Bitbucket Server
then this plugin will enable you to create a pull request for Bitbucket from Git Extensions. The plugin cannot be used for bitbucket.org.

For more information see: https://www.atlassian.com/software/bitbucket/server

	
Bitbucket Username

	The username required to access Bitbucket.

	
Bitbucket Password

	The password required to access Bitbucket.

	
Specify the base URL to Bitbucket

	The URL from which you will access Bitbucket.

	
Disable SSL verification

	Check this option if you do not require SSL verification to access Bitbucket Server.

Browse Repository

You can browse a repository by starting Git Extensions and select the repository to open. The main window contains
the commit log. You could also open the ‘Browse’ window from the shell extensions and from the Visual Studio IDE.

View commit log

The full commit history can be browsed. There is a graph that shows branches and merges. You can show the difference
between any two revisions by selecting them using ctrl-click.

[image: _images/commit_diff_view.png]
In the context menu of the commit log you can enable or disable the revision graph. You can also choose to only show the
current branch instead of showing all branches. The other options will be discussed later.

[image: _images/commit_contextual_menu.png]

Search or filter the commit history

You can find text in the commit messages or jump to a specific commit in the current commit history shown in Git
Extensions. You can also filter the commit history so that fewer commits are shown.

Quick search in history

You can find a commit in the commit history that is shown in Git Extensions by searching for text in the commit message,
branch label or tag. This is a quick search function. Simply click into the commit history to give that pane focus and
start typing. Git Extensions will show your search term in the top left corner and will immediately jump to the next
commit with matching text. You can search for the next or previous commit with matching text using Alt-Down Arrow or
Alt-Up Arrow.

In Settings, Git Extensions you can change the timeout for typing the text for the quick search.

Go to a specific commit

You can jump to a particular commit in the commit history if you know the SHA, tag or branch. In fact you can use any
expression valid for git-rev-parse. Select Navigate, Go to commit or press Ctrl-Shift-G to open the Go
to commit window. Enter an SHA or other term to be passed to git-rev-parse into the box at the top and click Go,
or select a branch or tag from one of the two combo boxes below.

Filter history

The history can be filtered using regular expressions and basic filter terms. Filtering will reduce the number of commits
that are shown in the Git Extensions commit history. The quick filter in the toolbar filters by the commit message, the
author and/or the committer.

[image: _images/quick_filter.png]
In the context menu of the commit log you can open the advanced filter dialog. The advanced filter dialog allows you to
filter for more specific commits. To remove the filter either remove the filter in the toolbar and press enter or remove the
filter in the advanced filter dialog.

[image: _images/advance_filter_dialog.png]

Single file history

To display the single file history, right click on a file name in the File tree or in the Diff tab and select File history.

[image: _images/context_menu_blame.png]
The single file history viewer shows all revisions of a single file. You can view the content of the file in after each
commit in the View tab.

[image: _images/file_history.png]
You can view the difference report from the commit in the Diff tab.

Note

Added lines are marked with a +, removed lines are marked with a –.

[image: _images/file_history_diff.png]

Blame

There is a blame function in the file history browser. It shows the last person editing a single line.

[image: _images/blame.png]
Double clicking on a code line shows the full commit introducing the change.

Commit

A commit is a set of changes with some extra information. Every commit contains the following information:

	Changes

	Committer name and email

	Commit date

	Commit message

	Cryptographically strong SHA1 hash

Each commit creates a new revision of the source. Revisions are not tracked per file; each change creates a new
revision of the complete source. Unlike most traditional source control management systems, revisions are not named
using a revision number. Each revision is named using a SHA1, a 41 long characters cryptographically strong hash.

Commit changes

Changes can be committed to the local repository. Unlike most other source control management systems you do not need to
checkout files before you start editing. You can just start editing files, and review all the changes you made in the commit
dialog later. When you open the commit dialog, all changes are listed in the top-left.

[image: _images/commit_dialog.png]
There are three kinds of changes:

	Untracked

	This file is not yet tracked by Git. This is probably a new file, or a file that has not been committed to Git
before.

	Modified

	This file is modified since the last commit.

	Deleted

	This file has been deleted.

When you rename or move a file Git will notice that this file has been moved, but currently Git Extensions does not show
this in the commit dialog.

During your initial commit there are probably lots of files you do not want to be tracked. You can ignore these files by not
staging them, but they will show every time. You can instead add them to the .gitignore file of your repository. Files that are
in the .gitignore file will not show up in the commit dialog again. You can open the .gitignore editor from the menu
Working dir changes by selecting Edit ignored files.

[image: _images/commit_menu_edit_ignored.png]
Making a commit is a two step procedure:

	Staging the changes to be committed, which saves a snapshot of the changes into the Git “index”.

	Committing those staged changes, which records the staged changes and other information into the repository.

You do not have to commit immediately after staging changes. You can close the commit dialog, make further changes to the
files in the working dir, then re-open the commit dialog to stage further changes and commit. Changes that you have staged
previously will still be staged when you re-open the dialog.

Staging changes

The changes that you have made to your working directory are not automatically included in a commit. You must choose
which of the changed files, or individual changes from within those files, will be included in the commit by “staging” the
changes in Git Extensions. Staging changes in Git Extensions is the same as using git add on the Git command line.

You can stage the changes you want to commit by selecting the files in the top-left or “Unstaged changes” pane and pressing
the Stage button or pressing the [S] key. The file entries will move to the lower left or “Staged changes” pane. You
need to stage deleted files because you stage the change and not the file. If you have staged changes from a file and you
wish to exclude those changes from the commit, select the entry in the staged changes pane and press the Unstage
button or press the [U] key.

If the file that is selected in either the unstaged or staged changes pane is text format, Git Extensions will show a
Git “diff” view in the right side pane of the window.

Staging selected lines

You do not have to commit all of the changes in a text format file in one commit. You can select and stage individual lines
from within a file such that only the chosen lines will be included in your next commit; the remaining changes in the file
will appear as unstaged changes for the next commit.

In the diff view on the right, select the line or lines that you want to stage then right-click and choose Stage selected
line(s) or press the [S] key. The file will now appear in both the staged changes and unstaged changes panes on the left
since now there are both staged and unstaged changes in the same file. The change that was selected will disappear from the
diff view on the right because the diff view is showing only the unstaged changes.

To see the line changes that have been staged select the entry for the file in the staged changes pane. To unstage selected
changed lines from a file, select that file in the staged changes pane, then select the line or lines in the diff view, right
-click, and choose Unstage selected line(s) or press the [U] key.

Note

If you select an entire line including the end-of-line character then staging or unstaging that line will include
both the selected line and the next line. To select a single line to stage or unstage you may simply click onto the line
without selecting any particular characters.

Note

Staging and unstaging individual lines from a file does not change the file itself. It is simply choosing which
changes from within that file will be included in the next commit.

Undoing or resetting changes

You can undo or reset changes to files from the commit dialog. You can only do this from the top-left or “Unstaged changes”
pane. If you have already staged the changes then you must first unstage them as described above. To reset the changes in a
file, select the file in the unstaged changes pane, right-click and choose Reset file or directory changes or press the
[R] key.

[image: _images/reset_changes.png]
You can reset individual changed lines in a similar way to staging and unstaging individual lines, which are described above.
To reset an individual line, select the line or lines in the diff view on the right then right-click and choose Reset
selected lines or press the [R] key.

Warning

Resetting changes modifies the file, discarding either all of the changes or the changes on the selected lines.

Making the commit

When all the changes you want to commit are staged, enter a commit message into the lower-right pane and press the commit button.

[image: _images/commit_dialog_commit.png]
It is also possible to add changes to your last commit by checking the Amend Commit checkbox. This can be very useful when you
forgot some changes. This function rewrites history; it deletes the last commit and commits it again including the added
changes. Make sure you only use Amend Commit when the commit is not yet published to a remote repository.

There is a built-in spelling checker that checks the commit message. Incorrectly spelled words are underlined with a wavey red line.
Right-click on the misspelled word to choose the correct spelling or choose one of the other options.

[image: _images/commit_dialog_spellchecker.png]
Git Extensions installs a number of dictionaries by default. You can choose another language in the context menu of the
spelling checker or in the settings dialog. To add a new spelling dictionary add the dictionary file to the Dictionaries
folder inside the Git Extensions installation folder.

[image: _images/commit_dialog_language.png]

Cherry pick commit

A commit can be recommitted by using the cherry pick function. This can be very useful when you want to make the same change
on multiple branches.

[image: _images/cherry_pick.png]

Revert commit

A commit cannot be deleted once it is published. If you need to undo the changes made in a commit, you need to create a new
commit that undoes the changes. This is called a revert commit.

[image: _images/revert_commit.png]

Stash changes

If there are local changes that you do not want to commit yet and not want to throw away either, you can temporarily stash
them. This is useful when working on a feature and you need to start working on something else for a few hours. You can
stash changes away and then reapply them to your working dir again later. Stashes are typically used for very short periods.

[image: _images/stash_dialog.png]
You can create multiple stashes if needed. Stashes are shown in the commit log with the text [stash].

[image: _images/commit_log_stash.png]
The stash is especially useful when pulling remote changes into a dirty working directory. If you want a more permanent
stash, you should create a branch.

Tag

Tags are used to mark a specific version. Usually a tag will not be moved anymore. The image below shows
the commit log of Git Extensions with two tags indicating version [1.08] and [1.06].

[image: _images/tag.png]

Create tag

In Git Extensions you can tag a revision by choosing Create new tag in the commit log context menu. A dialog
will prompt for the name of the tag. You can also choose Create tag from the Commands menu, which will show
a dialog to choose the revision and enter the tag name.

[image: _images/new_tag.png]
Once a tag is created, it cannot be moved again. You need to delete the tag and create it again to move it.

Delete tag

For some operation it is very useful to create tags for temporary usage. Git uses SHA1 hashes to name each commit.
When you want to merge with an unnamed branch it is good practise to tag the unnamed branch, merge with the tag and then
delete the tag again.

[image: _images/delete_tag.png]

Re-Tag?

Read about “What should you do when you tag a wrong commit and you would want to re-tag?” here:
https://www.kernel.org/pub/software/scm/git/docs/git-tag.html#_on_re_tagging

Branches

[image: _images/branch.png]
Branches are used to commit changes separate from other commits. It is very common to create a new branch when you
start working on a feature to keep the work done on that feature separate from other work. When the feature is
complete the branch can be merged or rebased as you choose such that the commits for the feature either remain as a
parallel branch or appear as a continuous single line of development as if the branch had never existed in the first
place. The image on the right illustrates a branch created on top of commit B.

You can see the name of your current branch in a combo box in the toolbar. You can switch to another branch by
choosing from the combo box list. In the commit log the current branch has an arrow head to the left of its name. If
you are not currently on a branch because you have checked out a specific commit but not any particular branch then
Git Extensions will show (no branch) in place of a branch name in the toolbar. This is called “Detached HEAD
mode”. In Git you can refer to your current branch or commit by the special reference HEAD in place of the
branch name or commit reference.

[image: _images/branch_name.png]

Create branch

In Git Extensions there are multiple ways to create a new branch. In the image below I create a new branch from the
context menu in the commit log. This will create a new branch on the revision that is selected.

[image: _images/new_branch.png]
I will create a new branch called Refactor. In this branch I can do whatever I want without affecting others.
The default in Git Extensions is to check out a new branch after it is created. If you want to create a new branch
but remain on your current branch, uncheck the Checkout after create checkbox in the Create branch dialog.

[image: _images/create_branch_dialog.png]
When the branch is created you will see the new branch Refactor in the commit log. If you chose to checkout this
branch the next commit will be committed to the new branch.

[image: _images/refactor_branch.png]
Creating branches in Git requires only 41 bytes of space in the repository. Creating a new branch is very easy and
fast. The complete work flow of Git is optimized for branching and merging.

Orphan branches

In special cases it is helpful to have orphan branches (see for example https://www.google.com/search?q=why+use+orphan+branches+in+git).
Check the “Create orphan” checkbox to create an orphan branch (--orphan option in git).

The newly created branch will have no parent commits.

The option “Clear working dir and index” (git rm -rf) is active by default. So the working dir and index will be cleared.
If you uncheck the last option then the working dir and index will not be touched.

Checkout branch

You can switch from the current branch to another branch using the checkout command. Checking out a branch sets the current
branch and updates all of the source files in the working directory. Uncommitted changes in the working directory can be
overwritten so it is best practice to make sure your working directory is clean by either committing or stashing any current
changes before checking out a branch. If you do not clean your working directory then, in the Checkout branch dialog, you
can choose between four options for your local uncommitted changes:

	Don't change

	Local changes will be retained if there are not conflicting changes from the branch you are checking out.

	Merge

	Performs a three-way merge between your current branch, your local changes and the branch you are checking out.

	Stash

	Your local changes are stashed and the new branch is checked out. You can retrieve your changes on the new branch with stash-pop.

	Reset

	Your local changes are discarded and the new branch is checked out. Use caution with this option as Git has no record of uncommitted changes so they cannot be retrieved.

[image: _images/checkout_branch.png]

Merge branches

In the image below there are two branches, [Refactor] and [master]. We can merge the commits from the master branch
into the Refactor branch. If we do this, the Refactor branch will be up to date with the master branch, but not the other way around.
As long as we are working on the Refactor branch we cannot touch the master branch itself. We can merge the sources of
master into our branch, but cannot make any change to the master branch.

[image: _images/merge1.png]
To merge the Refactor branch into the master branch, we first need to switch to the master branch.

[image: _images/merge2.png]
Once we are on the master branch we can choose merge by choosing Merge branches from the Commands menu. In the merge
dialog you can verify which branch you are working on. Select the branch to merge with then click the Merge button.

[image: _images/merge_dialog.png]
After the merge the commit log will show the new commit containing the merge. Notice that the Refactor branch is not changed
by this merge. If you want to continue working on the Refactor branch you can merge the Refactor branch with master. You can
instead delete the Refactor branch if it is not used anymore.

[image: _images/merge3.png]

Note

When you need to merge with an unnamed branch you can use a tag to give it a temporary name.

Rebase branch

The rebase command is the most complex command in Git. The rebase command is very similar to the merge command. Both rebase
and merge are used to get a branch up-to-date. The main difference is that rebase can be used to keep the history linear
contrary to merges.

[image: _images/rebase1.png]
A rebase of Refactor on top of master will perform the following actions:

	All commits specific to the Refactor branch will be stashed in a temporary location

	The branch Refactor will be removed

	The branch Refactor will be recreated on the master branch

	All commits will be recommitted in the new Refactor branch

During a rebase merge conflicts can occur. You need to solve the merge conflicts for each commit that is rebased. The
rebase function in Git Extensions will guide you through all steps needed for a successful rebase.

[image: _images/rebase_dialog.png]
The image below shows the commit log after the rebase. Notice that the history is changed and it seems like the commits on
the Refactor branch are created after the commits on the master branch.

[image: _images/rebase2.png]

Warning

Because this function rewrites history you should only use this on branches that are not published to other repositories
yet. When you rebase a branch that is already pushed it will be harder to pull or push to that remote. If you want to get
a branch up-to-date that is already published you should merge.

Delete branch

Since it is common to create many branches, it is often necessary to delete branches. Most commonly you will need to delete
branches on which work has finished and their contents are merged into master or your main branch. You can also delete
unmerged branches when they are not needed anymore and you do not want to keep the work done in that branch.

When you delete a branch that is not yet merged, all of the commits that are in only the deleted branch will be lost.
When you delete a branch that is already merged with another branch, the merged commits will not be lost because they are
also part of another branch.

You can delete a branch using Delete branch from the Commands menu. If you want to delete a branch that is not merged into
your current branch (HEAD in Git), you need to check the Force delete checkbox.

[image: _images/delet_branch.png]

Patches

Every commit contains a change-set, a commit date, the committer name, the commit message and a cryptograph SHA1
hash. Local commits can be published by pushing it to a remote repository. To be able to push you need to have sufficient
rights and you need to have access to the remote repository. When you cannot push directly you can create patches.
Patches can be e-mailed to someone with access to the repository. Each patch contains an entire commit including the commit
message and the SHA1.

[image: _images/patche.png]

Create patch

Format a single patch or patch series using the format patch dialog. You need to select the newest commit first and then
select the oldest commit using ctrl-click. You can also select an interrupted patch series, but this is not recommended
because the files will not be numbered.

[image: _images/patche_dialog.png]
When the patches are created successfully the following dialog will appear.

[image: _images/patche_dialog_result.png]

Apply patches

It is possible to apply a single patch file or all patches in a directory. When there are merge conflicts applying the patch
you need to resolve them before you can continue. Git Extensions will help you applying all patches by marking the next
recommended step.

[image: _images/apply_patche.png]

Remote feature

Git is a distributed source control management system. This means that all changes you make are local. When you commit
changes, you only commit them to your local repository. To publish your local changes you need to push. In order to get
changes committed by others, you need to pull.

Manage remote repositories

You can manage the remote repositories in the Remotes menu.

[image: _images/manage_remote_repositories.png]
When you cloned your repository from a public repository, this remote is already configured. You can rename each remote for
easy recognition. The default name after cloning a remote is origin. If you use PuTTY as SSH client you can also enter the
private key file for each remote. Git Extensions will load the key when needed. How to create a private key file is described
in the next paragraph.

[image: _images/remote_repositories.png]
In the Default pull behaviour tab you can configure the branches that need to be pulled and merged by default. If you
configure this correctly you will not need to choose a branch when you pull or push. There are two buttons on this dialog:

	Prune remote branches

	Throw away remote branches that do not exist on the remote anymore.

	Update all remote branch info

	Fetch all remote branch information.

[image: _images/remote_repositories2.png]
After cloning a repository you do not need to configure all remote branches manually. Instead you can checkout the remote
branch and choose to create a local tracking branch.

Create SSH key

Git uses SSH for accessing private repositories. SSH uses a public/private key pair for authentication. This means you need
to generate a private key and a public key. The private key is stored on your computer locally and the public key can be given
to anyone. SSH will encrypt whatever you send using your secret private key. The receiver will then use the public key you send
to decrypt the data.

This encryption will not protect the data itself but it protects the authenticity. Because the private key is only available to
the sender, the receiver can be sure about the origin of the data. In practise the key pair is only used for the authentication
process. The data itself will be encrypted using a key that is exchanged during this initial phase.

PuTTY and github

PuTTY is SSH client that for Windows that is a bit more user friendly then OpenSSH. Unfortunately PuTTY does not work with
all servers. In this paragraph I will show how to generate a key for github using putty.

First make sure GitExtensions is configured to use PuTTY and all paths are correct.

[image: _images/github_ssh.png]
[image: _images/generate_or_import_key.png]
can choose Generate or import key to start the key generator.

	[image: _images/putty_key_generator1.png]

	[image: _images/putty_key_generator2.png]

PuTTY will ask you to move the mouse around to generate a more random key. When the key is generated you can save the public and
the private key in a file. You can choose to protect the private key with a password but this is not necessary.

Now you have a key pair you need to give github the public key. This can be done in Account Settings in the tab
SSH Public Keys. You can add multiple keys here, but you only need one key for all repositories.

[image: _images/account_settings.png]
After telling github what public key to use to decrypt, you need to tell GitExtensions what private key to use to encrypt.
In the clone dialog there is a Load SSH key button to load the private key into the PuTTY authentication agent. This can
also be done manually by starting the PuTTY authentication agent and choose add key in the context menu in the system tray.

[image: _images/putty_agent.png]
GitExtensions can load the private keys automatically for you when communicating with a remote. You need to configure the
private key for the remote.

This is done in the Manage remote repositories dialog.

OpenSSH and github

When you choose to use OpenSSH you need to configure GitExtensions as shown in the screenshot below.

[image: _images/github_openssh.png]
OpenSSH is the best SSH client there is but it lacks Windows support. Therefore it is slightly more complex to use.
Another drawback is that GitExtensions cannot control OpenSSH and needs to show the command line dialogs when OpenSSH might
be used. GitExtensions will show the command line window for every command that might require a SSH connection. For this
reason PuTTY is the prefered SSH client in GitExtensions.

To generate a key pair in OpenSSH you need to go to the command line. I recommend to use the git bash because the path to
OpenSSH is already set.

[image: _images/git_bash_toolbar.png]
Type the following command: ssh-keygen -C "your@email.com" -t rsa
Use the same email address as the email address used in git. You will be asked where if you want to protect the private
key with a password. This is not necessary. By default the public and private keys are stored in
c:\Documents and Settings\[User]\.ssh\ or c:\Users\[user]\.ssh\.

[image: _images/ssh_bash.png]
You do not need to tell GitExtensions about the private key because OpenSSH will load it for you. Now open the public
key using notepad and copy the key to github. This can be done in Account Settings in the tab SSH Public Keys
on GitHub [http://www.github.com].

[image: _images/ssh_folder.png]

Pull changes

You can get remote changes using the pull function. Before you can pull remote changes you need to make sure there are no
uncommitted changes in your local repository. If you have uncommitted changes you should commit them or stash them during the
pull. You can read about how to use the stash in the Stash chapter.

[image: _images/pull_toolbar.png]
In order to get your personal repository up-to-date, you need to fetch changes from a remote repository. You can do this using
the Pull dialog. When the dialog starts the default remote for the current branch is set. You can choose another remote
or enter a custom url if you like. When the remote branches configured correctly, you do not need to choose a remote branch.

If you just fetch the commits from the remote repository and you already committed some changes to your local repository, the
commits will be in a different branch. In the pull dialog this is illustrated in the image on the left. This can be useful when
you want to review the changes before you want to merge them with your own changes.

[image: _images/pull_dialog.png]
When you choose to merge the remote branch after fetching the changes a branch will be created, and will be merged into
your commit. Doing this creates a lot of branches and merges, making the history harder to read.

[image: _images/pull_dialog2.png]
Instead of merging the fetched commits with your local commits, you can also choose to rebase your commits on top of the
fetched commits. This is illustrated on the left in the image below. A rebase will first undo your local commits (c and d),
then fetch the remote commits (e) and finally recommit your local commits. When there is a merge conflict during the rebase,
the rebase dialog will show.

[image: _images/pull_dialog3.png]
Next to the pull button there are some buttons that can be useful:

	Solve conflicts

	When there are merge conflicts, you can solve them by pressing this button.

	Stash changes

	When the working dir contains uncommitted changes, you need to stash them before pulling.

	Auto stash

	Check this checkbox if you want to stash before pulling. The stash will be reapplied after pulling.

	Load SSH key

	This button is only available when you use PuTTY as SSH client. You can press this button to load the
key configured for the remote. If no key is set, a dialog will prompt for the key.

Push changes

In the browse window you can check if there are local commits that are not pushed to a remote repository yet. In the image
below the green labels mark the position of the master branch on the remote repository. The red label marks the position of
the master branch on the local repository. The local repository is ahead three commits.

[image: _images/push1.png]
To push the changes press Push in the toolbar.

[image: _images/push_toolbar.png]
The push dialog allows you to choose the remote repository to push to. The remote repository is set to the remote of the
current branch. You can choose another remote or choose a url to push to. You can also specify a branch to push.

[image: _images/push_dialog.png]
Tags are not pushed to the remote repository. If you want to push a tag you need to open the Tags tab in the dialog. You
can choose to push a singe tag or all tags. No commits will be pushed when the Tags tab is selected, only tags.

You can not merge your changes in the remote repository. Merging must be done locally. This means that you cannot push your
changes before the commits are merged locally. In practice you need to pull before you can push most of the times.

Merge Conflicts

When merging branches or commits you can get merge conflicts. Git will try to resolve these, but some conflicts
need to be resolved manually. Git Extensions will show warnings when there is a merge conflict.

[image: _images/merge_conflicts.png]

Handle merge conflicts

To solve merge conflicts just click on a warning or open the merge conflict dialog from the menu. A dialog will prompt
showing all conflicts. You can solve a conflict by double-click on a filename.

[image: _images/resolve_merge_conflicts.png]
There are three kinds of conflicts:

	File deleted and changed

	Use modified or deleted file?

	File deleted and created

	Use created or deleted file?

	File changed both locally and remotely

	Start merge tool.

If the file is deleted in one commit and changed in another commit, a dialog will ask to keep the modified file or delete
the file. When there is a conflicting change the merge tool will be started. You can configure the tool you want to use for
merge conflicts. The image below shows Perforce P4Merge a free to use merge tool. Git Extensions is packaged with KDiff3, an
open source merge tool.

In the merge tool you will see four versions of the same file:

	Base

	The latest version of the file that exist in both repositories

	Local

	The latest local version of the file

	Remote

	The latest remote version of the file

	Merged

	The result of the merge

Caution

When you are in the middle of a merge the file named local represents your file. When you are in the middle of a rebase the
file named remote represents your file. This can be confusing, so double check if you are in doubt.

[image: _images/perforce_p4merge.png]

Modify Git history

There are 2 different cases, and consequently 2 ways to do it with git when we want to modify the history:

	Modify the last commit of the current branch with doing an amend

	Modify an older commit with doing an interactive rebase

Note: There are 2 things to understand when working with the history with git:

	As git only creates immutable commits (sealed by the sha1), “modifying” a commit is in fact creating a new more or less similar commit.

	Consequently, the entire history of children following the changed commit will be different.

So, except if the history has not been already pushed, or if you have good reasons, it is a bad practice to change the history
because you will mess the history of other developers.

Modify the last commit

The easiest way to modify the history is to modify the last commit made by doing what is called an amend.
To do that, open the commit windows and check the option “Amend commit”.
If the commit message text area was empty, it is now filled with the message of the last commit.
You could now just update the commit message and commit or also add some more changes in the staging area to
add them to the commit.

[image: _images/amend_commit.png]

Modify an older commit

To modify an older commit than the last one of the current branch, we must use the interactive rebase.

Doing an interactive rebase

First, you should create a commit containing the changes you want to add to a previous commit
(or know an existing commit that contains this changes).

Then use the rebase feature in interactive mode on a base commit older than the one that you want to modify.

[image: _images/rebase_interactive.png]
Check the option interactive and click on Rebase to launch the process.

[image: _images/rebase_interactive_option.png]
You will be prompted by a text editor displaying all the commits that will be rebased

You could have a look to this _documentation: https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History to better understand all the possibilities offered.

The options offered are :

	reorder the lines to reorder the commits,

	delete a line to throw away a commit and the changes introduced by the commit,

	write r or reword in front of a commit to rewrite the commit message,

	write f or fixup in front of a commit to meld the commit with the previous commit and with keeping the commit message of the first commit,

	write s or squash in front of a commit to meld the commit with the previous commit and with rewriting the commit message.

Often, we will use interactive rebase to move the line and squash or fixup commits to modify the history.

Once we did the changes, save and close the editor to let git do the rebase.

Using autosquash rebase feature

There is an option to facilitate the use of the interactive rebase when you know, at the moment of doing a
commit that the changes introduced by this commit should have been made in an older commit (the case of a fixup or squash).

In this case, you should create a commit containing the changes you want to add to a previous commit and use the Advanced menu to:

	create a fixup commit

	create a squash commit

Right click on the commit in the history, you know that you want to “modify”.

And choose the suitable option…

[image: _images/rebase_interactive_fixup_commit.png]
GitExtensions will open the commit window with an already filled commit message containing the needed information to find the commit to “modify”.

[image: _images/rebase_interactive_option.png]
Do not change the commit message and commit all the changes needed.

Then process to the interactive rebase, like describe in the previous paragraph but with enabling the option Autosquash.

[image: _images/rebase_interactive_autosquash.png]
Launch the rebase by clicking on Rebase.

The interactive rebase will process the same way but with a major difference!
When enabling the Autosquash option, git will automatically reorder the commits lines and write the good actions in front of the commits
when it will open the text editor. You normally have just to close the editor (except if you want to do additional changes).
And let git do the rebase.

Notes

Notes can be added to a commit. Notes will be stored separately and will not be pushed. To add a new note
choose add notes in the context menu of the commit information box.

[image: _images/add_note_context_menu.png]
The editor that has been configured in the settings dialog will be used to enter or edit the notes. The Git
Extensions editor is advised.

[image: _images/note_editor.png]

Submodules

Large projects can be split into smaller parts using submodules. A submodule contains the name, url and revision of
another repository. To create a submodule in an existing git repository you need to add a link to another repository
containing the files of the submodule.

[image: _images/submodules.png]

Manage submodules

The current state of the submodules can be viewed with the Manage submodules function. All submodules are shown in
the list on the left.

[image: _images/submodules_dialog.png]

	Add submodule

	Add a new submodule to the repository

	Synchronize

	Synchronizes the remote URL configuration setting to the value specified in .gitmodules for the selected
submodule.

	Initialize

	Initialize the selected submodules, i.e. register each submodule name and url found in .gitmodules into
.git/config. The submodule will also be updated.

	Update

	Update the registered submodules, i.e. clone missing submodules and checkout the commit specified in the index
of the containing repository.

Add submodule

To add a new submodule choose Add submodule in the Manage submodules dialog.

[image: _images/add_submodules.png]

	Path to submodule

	Path to the remote repository to use as submodule.

	Local path

	Local path to this submodule, relative to the root of the current repository.

	Branch

	Branch to track.

Remove submodule

It is currently not possible to remove a submodule using the Git Extensions user interface. To remove a submodule you
need to manually:

	Delete the relevant line from the .gitmodules file.

	Delete the relevant section from .git/config.

	Run git rm --cached path_to_submodule (no trailing slash).

	Commit and delete the now untracked submodule files.

Maintenance

In this chapter some of the functions to maintain a repository are discussed.

Compress Git database

Git will create a lot of files. You can run the Compress git database to pack all small files building up a repository
into one big file. Git will also garbage collect all unused objects that are older then 15 days. When a database is fragmented
into a many small files compressing the database can increase performance.

[image: _images/compress_database.png]

Recover lost objects

If you accidently deleted a commit you can try to recover it using the Recover lost objects function. A dialog will
show you all dangling objects and will allow you to review and recover them.

[image: _images/recover_objects.png]
Normally Git will not delete files right away when you remove something from your repository. The reason for this is that you
can restore deleted items if you need to. Git will delete removed items when they are older then 15 days and you run Compress
git database.

[image: _images/verify_database.png]
There are several functions to help you find the lost items. By default Git Extensions will only show commits. To show all
items, just uncheck the Show only commits option. The other options can be checked/unchecked to get more/less results.
Double-click on on item to view the content. When you located the item you want to recover you can tag it using the Tag
selected object button.

Git Extensions also is able to tag all lost objects. Doing this will make all lost objects visible again making it very easy
to locate the commit(s) you would like to recover. After recovering a commit using the Tag all lost commits button, you can
remove all tags using the Delete all LOST_AND_FOUND tags button.

[image: _images/lost_found.png]

Fix user names

When someone accidentally committed using a wrong username this can be fixed using the Edit .mailmap function. Git will use
the username for an email address when it is set in the .mailmap file.

[image: _images/mail_map.png]
Fix user name using commit email:

Proper Name <commit@email.xx>

Fix email address using commit email:

<proper@email.xx> <commit@email.xx>

Fix email address and name using commit email:

Proper Name <proper@email.xx> <commit@email.xx>

Fix email address and name using commit name and email:

Proper Name <proper@email.xx> Commit Name <commit@email.xx>

Ignore files

Git will track all files that are in the working directory. Normally you do not want to exclude all files that are created
by the compiler. You can add files that should be ignored to the .gitignore file. You can use wildcards and regular expressions.
All entries are case sensitive. The button Add default ignores will add files that should be ignored when using Visual Studio.

[image: _images/gitignore.png]
A short overview of the syntax:

	#

	Lines started with # are handled as comments

	!

	Lines started with ! are exclude patterns

	[Dd]

	Characters inside [..] means that 1 of the characters must match

	*

	Wildcard

	/

	A leading slash matches the beginning of the pathname; for example, /*.c matches cat-file.c but not
mozilla-sha1/sha1.c

	/

	If the pattern ends with a slash, it is removed for the purpose of the following description, but it would only find a
match with a directory. In other words, foo/ will match a directory foo and paths underneath it, but will not match a
regular file or a symbolic link foo (this is consistent with the way how pathspec works in general in git).

For more detailed information [http://www.kernel.org/pub/software/scm/git/docs/gitignore.html].

Translations

Change language

In the settings dialog a translation can be chosen. The translation files are located in a directory located in the
Git Extensions installation directory. The files are readable xml files.

[image: _images/choose_language.png]

Translate Git Extensions

Translations are done on Transifex: https://www.transifex.com/git-extensions/git-extensions/

Integration

During installation you can choose to install the Visual Studio plug-in and shell extensions.

Visual Studio

There are two options in the context menu on files:

	View the file history by choosing the ‘File history’ option.

	Reset the file changes to the last committed revision.

[image: _images/context_menu.png]
A Git Extensions toolbar allows you to perform the most common actions.

	[image: _images/commit.png]

	Commit (branch)

	[image: _images/browse.png]

	Browse

	[image: _images/pull.png]

	Pull

	[image: _images/push.png]

	Push

	[image: _images/stash.png]

	Stash changes

	[image: _images/settings1.png]

	Settings

[image: _images/toolbar.png]
Almost all function can be started from the Git menu in Visual Studio.

[image: _images/git_menu.png]

Windows Explorer

The common commands can be started from Windows Explorer using the shell extensions. This option is only available
when Shell Extensions are installed.

[image: _images/explorer_integration.png]
You can even create or clone a repository in any non git folder.

[image: _images/explorer_integration_new.png]

Command line

Git Extensions command line

Most features can be started from the command line. It is recommended to add gitex.cmd to the path
when using from the command line. It is typically stored in the C:\Program Files (x86)\GitExtensions folder.

[image: _images/command_line_usage.png]
[image: _images/command_line.png]

Appendix

Git Cheat Sheet

	Action

	Command

	Create new repository

	$ git init

	Create shared repository

	$ git init –-bare –-shared=all

	Clone repository

	$ git clone c:/demo1 c:/demo2

	Checkout branch

	$ git checkout <name>

	Create branch

	$ git branch <name>

	Delete branch

	$ git branch -d <name>

	Merge branch (from the branch to merge into):

	$ git merge PDC

	Solve conflicts (add –tool=kdiff3 if no mergetool is specified)

	$ git mergetool
$ git commit

	Create tag

	$ git tag <name>

	Add files/changes (. for all files)

	$ git add .

	Commit added files/changes (–amend to amend to last commit)

	$ git commit –m “Enter commit message”

	Discard changes

	$ git reset –hard

	Create patch (-M = detect renames –C = detect copies)

	$ git format-patch –M –C origin

	Apply patch without merging

	$ git apply c:/patch/01-emp.patch

	Merge patch

	$ git am -–3way –-signoff c:/patch/01-emp.patch

	Solve conflicts (add –tool=kdiff3 if no mergetool is specified)

	
$ git mergetool

$ git am –-3way -–resolved

	Stash changes

	$ git stash

	Apply stashed changes

	$ git stash apply

	Pull changes (add –rebase to rebase instead of merge)

	$ git pull c:/demo1 master

	Solve conflicts (add –tool=kdiff3 if no mergetool is specified)

	
$ git mergetool

$ git commit

	Push changes (in branch $ git push c:/demo1 master master:<new>)

	$ git push c:/demo1

	Blame

	$ git blame –M –w <filename>

	Help

	$ git <command> –help

Here are some default names used by Git.

	Default names

	master

	default branch

	origin

	default upstream repository

	HEAD

	current branch

	HEAD^

	parent of HEAD

	HEAD~4

	the great-great grandparent of HEAD

Menu map

The following image shows GitExtensions’ menu structure at one glance (v2.43):

[image: _images/GitExt_Menu_Structure_v2_43.png]

Plugins

List of the available plugins

	Auto Compile Submodules

	Background Fetch

	Create Local Tracking Branches

	Delete Unused Branches

	Find Large Files

	Gerrit Code Review

	GitFlow

	GitUIPluginInterfaces

	Github

	Gource

	Proxy Switcher

	Release Notes Generator

	Statistics

(Incomplete list)

GitFlow

This plugin permit to manage your _branching model: http://nvie.com/posts/a-successful-git-branching-model/ with _GitFlow: https://github.com/nvie/gitflow in GitExtension

You should have GitFlow installed to use this plugin.

The GitFlow plugin permit to :
- init gitflow in your git repository
- create your feature, hotfix, release or support branch
- manage (pull, publish or finish) your existing gitflow branches

Index

 _images/putty_key_generator2.png
PuTTY Key Generator

File Key Conversions Help

ey
Publckeyfor psting it OpenSH stz ks e
ehiza |
BNz T c2EAAAABDAAAIEE Y S aCTHECE BB XAEEDISY2
By 81 SIS0k 222 B aVFD N APt
AT TXcbetAenED 217 LA Q4N ok] O

ek 20081208 =l
Keyligempit: [1023 Tt 723073 02 S o 2o
Kepcomments [rekey 20051208

Key passphrase:

Confim passphase:

e
e s
bR O =
Sty o || S

R

Type of key to generate:
551 [RSA) & 35H2R%A © 35H2D5A

Nurber ofbits in a generated key: 1024

_images/quick_filter.png
GitbxtensionsDoc (master) -

Fle Gt Commands Remotes Gihub Submodules Plugins Settings Hep
2 |© + CAdocuments\doc\GibtensionsDocy « master + [-+ © Commit@) & - @ | 17 |Branches

) master | |, origin/master | Add and partialy update view commit log part
Add new repository part

Add s progress file

Add sppearance screen

Complete gt etensions setting table

Start git xtensions setting table

Set copyrights

martingt

maringt
maringt
maringt
maringt
maringt

martingt

15 minutes ago
18 minutes ago
26 minutes ago
2hoursago
16 hours ago
16 hours ago

© commit [I File tree | 733 Diff

Author; martingt <m ki2@lapostenet>
Date: 13 minutes ago (sam. janv. 12 14:00:40 2013)

U "W Commit hash: a63ace2dcTedaB89e00cT cead35e0041456068
Children: £<3029066d
Parent(s): 1250952693
Add clone repository part
Contained in branches: master

Contained in no tag

_images/putty_agent.png
c

% Load PuTTY 55H key into authentication agent:

Rieposiory o clone

Destination

[gi@gthub comspddT0/gtenensions gt |
[CDevelopments |

x|

Foe

Bome_|

Pivate kepfie [imers n Setigeerky Dot Demakey ol z] | rowse
& Load
| " "

" Centalreposiory, o working di (-bare)

2P Load S5H key

s

_images/putty_key_generator1.png
i PuTTY Key Generator

File Key Conversions Help

ey
Flease generate some randormness by moving the mouse over the blark ares

e

e
e s
bR O &
Sty S || s

R

Type of key to generate:
(all SR GED) & ssH2Rss € s5H2D5s

Nurber ofbits in a generated key: iz

_images/rebase1.png
Imaster] Added close checkbox to process dizlog
‘Added basic image viewer

‘Added image support

‘Added waitoursor

‘dded ShowCommandLine option and added doubleclick to commit dialog
dded CoseProcessDislog and added ShowRevisionGraph options.

Fixed crash on some repos

Added changelog

Henk Westhuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk Westhuis

Date
Sun Feb 22 1228:12 2009 40100
Sun Feb 22 122754 2009 +0100
Sun Feb 22 122740 2009 40100
SatFeb 21 133428 2009 40100
SatFeb 21 130505 2009 40100
SatFeb 21 124249 2009 40100
SatFeb 21 10:47:33 2009 40100
SatFeb 21 10:3400 2009 40100
Fr Feb 20 20,0502 2008 40100
Thu Feb 19213807 2009 40100
Th Feb 19 20.01:54 2009 40100

_images/rebase2.png
Message. Adthor Date.
[Refactor Namespace renamed to GitExtensions.™ Henk Westhuis. ‘Sun Feb 22 13:21:26 2009 +0100
‘Sources moved to subdir Herk Westhuis ‘Sun Feb 22 12:27:54 2009 +0100
Removed unused projects Henk Westhuis ‘Sun Feb 22 12:27:40 2009 +0100
Imaster] Added close checkbox to process dizlog Henk Westhuis SatFeb 21 133428 2009 40100
dded basic image viewer Henk Westhuis SatFeb 21 1305:05 2009 40100
‘Added image support Henk Westhuis SatFeb 21 1242:49 2009 40100
‘Added waitoursor Herk Westhuis SatFeb 21 10:47:33 2009 40100
‘dded ShowCommandLine option and added doubleclick to commit dialog Henk Westhuis SatFeb 21 10:34:00 2009 40100
‘Added CoseProcessDislog and added ShowRevisionGraph opfions Henk Vesthuis Fri Feb 20 20:05:02 2009 40100
Fixed crash on some repos Herk Westhuis Th Feb 19.21:38:07 2009 +0100
Added changelog Henk Westhuis Th Feb 19 20:01:54 2009 +0100

_images/push_dialog.png
44 Push (Figitextensions\)

Pushto

[E] Push all branches

_images/push_toolbar.png
File Git Commands Remotes Settings Help
2 [fagitetensions\ & master | @ Commit § [§]|F

Graph Message Push

_images/push.png

_images/push1.png
Message

Date.

[master][1.50] Added close checkbor to process dialog
‘Added basic image viewer

‘Added image support

originHEAD] [originfmaster] Added waitcursor

Henk Westhuis
Henk iesthuis
Henk iesthuis
Henk Westhuis

SatFeb 21 13:34:28 2009 40100
SatFeb 21 130505 2009 40100
SatFeb 21 124249 2009 40100
Sat Feb 21 10:47:33 2008 0100

nav.xhtml

 Table of Contents

 		
 Git Extensions 2.51.05 Manual

 		
 Git Extensions

 		
 Features

 		
 Video tutorials

 		
 Links

 		
 Getting Started

 		
 Installation

 		
 Installation (Linux) (2.5x only)

 		
 Installation (macOS) (2.5x only)

 		
 Troubleshooting Mac Installation

 		
 Settings

 		
 Start Page

 		
 Clone repository

 		
 Clone SVN repository

 		
 Clone Github repository

 		
 Create new repository

 		
 Settings

 		
 Checklist

 		
 Git

 		
 Git Extensions

 		
 Commit dialog

 		
 Appearance

 		
 Revision Links

 		
 Colors

 		
 Start Page

 		
 Git Config

 		
 Build server integration

 		
 SSH

 		
 Scripts

 		
 Hotkeys

 		
 Shell Extension

 		
 Advanced

 		
 Confirmations

 		
 Detailed

 		
 Browse repository window

 		
 Diff Viewer

 		
 Plugins

 		
 Auto compile SubModules

 		
 Periodic background fetch

 		
 Create local tracking branches

 		
 Delete obsolete branches

 		
 Find large files

 		
 Gerrit Code Review

 		
 GitFlow

 		
 Github

 		
 Impact Graph

 		
 Statistics

 		
 Gource

 		
 Proxy Switcher

 		
 Release Notes Generator

 		
 Bitbucket Server

 		
 Browse Repository

 		
 View commit log

 		
 Search or filter the commit history

 		
 Quick search in history

 		
 Go to a specific commit

 		
 Filter history

 		
 Single file history

 		
 Blame

 		
 Commit

 		
 Commit changes

 		
 Staging changes

 		
 Staging selected lines

 		
 Undoing or resetting changes

 		
 Making the commit

 		
 Cherry pick commit

 		
 Revert commit

 		
 Stash changes

 		
 Tag

 		
 Create tag

 		
 Delete tag

 		
 Re-Tag?

 		
 Branches

 		
 Create branch

 		
 Orphan branches

 		
 Checkout branch

 		
 Merge branches

 		
 Rebase branch

 		
 Delete branch

 		
 Patches

 		
 Create patch

 		
 Apply patches

 		
 Remote feature

 		
 Manage remote repositories

 		
 Create SSH key

 		
 PuTTY and github

 		
 OpenSSH and github

 		
 Pull changes

 		
 Push changes

 		
 Merge Conflicts

 		
 Handle merge conflicts

 		
 Modify Git history

 		
 Modify the last commit

 		
 Modify an older commit

 		
 Doing an interactive rebase

 		
 Using autosquash rebase feature

 		
 Notes

 		
 Submodules

 		
 Manage submodules

 		
 Add submodule

 		
 Remove submodule

 		
 Maintenance

 		
 Compress Git database

 		
 Recover lost objects

 		
 Fix user names

 		
 Ignore files

 		
 Translations

 		
 Change language

 		
 Translate Git Extensions

 		
 Integration

 		
 Visual Studio

 		
 Windows Explorer

 		
 Command line

 		
 Git Extensions command line

 		
 Appendix

 		
 Git Cheat Sheet

 		
 Menu map

 		
 Plugins

 		
 List of the available plugins

 		
 GitFlow

_images/add_note_context_menu.png
© Commit |5 Filetree | 133 Diff

W4 Author austroliensun <australien@sun>
14 Dete: 1 day ago (ven. janv: 11 20:27:35 2013)
Commit hash: 7725fd36c1133604baat366577267752cTfcfdde
Children: 1586199930
Parent(s): Lobaftd619

forthose without rs2pdf nstalled.

Contained in branches: master
Contained in no tag

Copy commitinfo.

Show local branches containing this commit
Show remote branches containing this commit

Show remote branches only when no local branch contains this commit
Show tags cont

ing this commit

Add notes

_images/add_submodules.png
Add submodule |E
Pathto sbmodule D:\Demo\SubModueTest\GtUl « [Browse
Local path Gtul
Branch master -

R

_images/GitExt_Menu_Structure_v2_43.png
GitExt Menu structure v2.43

Repository opened:
File
Open (Cirl+0) Gt bash (Ctl+6)
Close GitGUL
Refresh (F5) Gitk

Recent Repositories >

File Explorer (Ctrl+ Shift+0)

Bit Q1+ Q)

Dashboard:
File
Open (@l+0) Gt bash (Ct1+6)
Close Git GUI
Refresh (F5) Gitk

Recent Repositories >

Bt 1+ Q)

Commands
Archive reviion
Cleanup repository.
Clone repository.
Clone SVN repository.
Create new repository

<24 more tems>

Github
Fork/Clone reposiory.
View pul requests
Create pull request

Github

Fork/Clone 'Eimi

Remotes
Manage remote repositories
PuTTY >

Submodules
Manage submodules

Update all submodiules
Synchronize all submodules

Plugins
Settings

<List of plugins>

Remotes
IManage remote repositories |
PuTTY >

Plugins

Settings

Check for updates
Github.

Settings

Git maintenance >
Compress git database
Recover lost objects
Delete indexlock

Edit gitignore
Edit gitattributes
Edit mailmap

Settings

Help
Commits per user
Gitcommand log

<Remaining Help entries>

Settings

“Corm—

Gitcommand log

<Remaining Help entries>

_images/account_settings.png
ithub B spars70 Dashboard inbox [l Account Setings Log Out

Bt

Account Seftings
Account Overview Plans &Biling Repositories Overview

About Yourself | Email Addresses | SSH Public Keys | Job Profile

Ne use these to give you access to your gitrepositories. Need help with public keys?
 myown (edit)

Title.

DemoKey

Key

e
[paamaNzaC1 o2 2aRAAE I0ARATE £25y¥SSKAC0) 1 635dRgT SEEAXTER4 I SGESYDISY2VEN
[15y08x/ 1581 30ywnTInS 153002722285 x 204202 SETHY1 DR VAR QT LO2bTRERARY
[E7TXgbe £1AsHCD21 Tu4+1GC4PLREMNaypK S =K se 1 /W3 T4copyhIQisSqums Zsa-key=
fo0s1z06

Addkey or cancel

Our RSA fingerprintis 16:27:ac'a5:76:28:24:35:63-1b:56:4d eb:dfa6:43

Explore GitHub Gist Bog Help (@ Search GitHub,

View Your Public Profile —

Plan Usage

You are currently on the Free plan

Disk Space 0.10GE/0.3068

Upgrade to add private repositories and collaborators!

SSL Disabled Change your plan

Administrative Information

Usemame spdr70 rename
Passworg et change
API Token

Global git config information Cancel your account

_images/apply_patche.png
Browse

Fie Gt Commands Remotes Settings

% [FAGitbtensions\ & master | @ Commit @ % | Gitbash [| Fitter:

Help

eI S
© Patchfie
(=T
Name _ Subject Athor Date Status =] [>Sve corficts<
1
[|0002 | IPATCH 1/3]Fced resethard and .. | Herk Westhuis Sun, 4 Jan 2009 16:16:16
[[oo03 | PATCHI Fured TestConsele/Progrs..._|Henk Westhuis Sun, 25.Jan 2009 122114
{0004 | PATCH 1781 Minor changes Herk Westhuis Sat, 31 Jan 2009 1419:12
{0005 | [PATCH 2/3 - Added x64 Release | arBmind Sun, 4 Jan 2009 172426 =
0006 | PATCH 2/6] Added +/-f highlht...|Herk Westhuis Thu, 5 Feb 2009 18:45:17
0007 | [PATCH 2/8] Improved pefomance . | Henk Westhuis Tue, 3 Feb 2009 19:37:42
0008 |[PATCH 3/6] Auto close windows | Henk Westhuis Sat, 7 Feb 2009 1509:34
0009 | PATCH 3/8] Changed version numb... | Herk Westhuis Tue, 3 Feb 2009 195640
0010 |[PATCH 3/3]ignore key fles artimind Sun, 4 Jan 2009 18:3326 H
0011 | [PATCH 4/8] Added +/- i hghlighi... | Herk Westhuis Thu, 5 Feb 2009 18:45.17
0012 | PATCH 4/6] Mor autocose [Heri Westhuis 5.7 Fob 2009 151658 |
0013 | [PATCH 5/6] Added erfecture.Im.._|Herk Westhus 52,7 Feb 2009 15:16:58 I

Patch
SimpleBxt
amow_refresh png

il

_static/up.png

_images/blame.png
File History - sourcels
Branches: T7251d36c113364bast3 ~ (- | Fiten

Change PDF parameters martingt Ldayago
Add pdf builder martingt 1dayago F
Change theme martingt Ldayago

Iniialcommit marting: 1dayag0 -

* View | 33; Diff| ¥ Blame

Parent(s): La6af0d619

forthose without rs2pdf nstalled.

W4 Author. australiensun <australien@sun>
14 Date: 1 day ago (ven. janv. 11 20:27:35 2013)

Commit hash: 7725d36c1133504baa366577267752cTfcfdde

australiensun - 11/01,
marting - 11/01/2013

sphinx = '1.0°

The suffix of source filenames.

If your documentation needs a minimal Sphinx version, state it here.
#needs

Add any paths that contain templates here, relative to this directory.
templates_path = [*_templates’]

O

Add any Sphinx extension module names here, as strings. They can be extensions
coming with Sphinx (named 'sphinx.exc.*') or your custom ones.
extensions = ['sphinx.ext.todo’]

_static/up-pressed.png

_images/advance_filter_dialog.png
B COBDLESS

<J<<<] <

Create newtag T
Createnewbranch Ctrl+B

Merge into current branch
Rebase current branch on
Reset current branch to here
Checkout branch

Checkout revision
Manipulate commit
Archive revision

Show branches

Show revision graph

Draw non reltives gray.
Order revisions by date
Show author date

Show relative date

Show git notes

Set advanced filter

Copyto clipboard |

net>
121

Jart

Filter.

Since
Unil
Author

Committer

Message
gnore case
Limit
Fiefiter

Branches

1| samedi 12 jamiier 2013

1| samedi 12 jamiier 2013

_images/amend_commit.png
<1

& Commit message ~ =] Commit templates ~

© Commit

€ Commit&push [Add documentation about "fixup” and “squash” commits]
£ Resetall changes
) Reset unstaged changes

9] Amend Commit
RS

_images/branch.png

_static/plus.png

_static/minus.png

_images/branch_name.png
% | @ - C\documents\doc\GitbxtensionsDoc\ +[master -] % + @ Commit@) & - @& | B (7 | Branches:

@ | Fitter:

_images/browse.png

_images/choose_language.png
Choose language.

Choose your language

S
I P N

Dutzh Englsh Trlano Japanese

Russian Sipified Chinese Spanish

You can change the languags at any tie inthe settings didog

_images/clone.png
Clone

[P OIN:// github.com/ martingt/ GitExtension:
Destination: C\documents\tmp
Subdirectory to create: GitBitensionsDoc

Branch: master

The repository will be cloned to a new directory located here:
C:\documents\tmp)\ GitextensionsDoc (New directory)

Repositor type
Personsl repository

Public repository, no working dir (--bare)

Inifalize all submodules

_images/checkout_branch.png
Localbranch) Remote branch

Select branch -

Local changes

Dortchange © Merge © Sth © st

_images/cherry_pick.png
44 Cherry pick

=] S|

‘Select 3 commit you wart to cheny pick. The commit wil be recommited on top of the curent head

10.92IFixed bug in clone (git cannot work Herk Westhuis

Automaticall create commit when there are no merge corficts

Graph Message. Aushor Date -
Fixed scrollbars Herk Westhuis ‘Sat Dec 27 11:49:18 2008 +0100
Loading panels Henk Westhuis ‘Sat Dec 27 11:41:53 2008 +0100
Fixed empty commits Henk Westhuis Fri Dec 26 17:18:19 2008 +0100
dded loading panel and async process. Henk Westhuis Fri Dec 26 17:13:41 2008 +0100
[origin/Async] Fixed some errors Henk Westhuis “Thu Dec 26 16:30:52 2008 40100
Async merged Henk Westhuis “Thu Dec 25 16:16:04 2008 +0100
Fixed datasource formift Herk Westhuis Tue Dec 9.20:07:24 2008 +0100
Asyne Henk Westhuis Tue Dec 9 19:56:21 2008 +0100
Small changes Henk Westhuis Tue Dec 23 20:36:19 2008 +0100
‘Added commits n listimit for performan Henk Westhuis Tue Dec 23 20:27:36 2008 +0100
Fixed registry permissions'problem Henk Westhuis Mon Dec 22 20:18:49 2008 +0100
‘Settings checked at startup. Herk Westhuis Mon Dec 22 19:32:59 2008 +0100

Fri Des 19 16:37:19 2008 +0100

_images/commit.png

_images/commit_contextual_menu.png
B o8B PO

<J<<<] <

Copyto clipboard

Create newtag T
Createnewbranch Ctrl+B

Reset current branch to here
Rename branch
Checkout branch
Checkout revision
Manipulate commit
Archive revision

Show branches

Show revision graph
Draw non reltives gray.
Order revisions by date
Show author date
Show relative date
Show git notes

Set advanced filter

_images/command_line.png
jelcone to Git Cversion 1.6.1-previeu20081227)

‘git help git’ to display the help index.
“git help <command>’ to display help for specific commands.

KEKAMER /£ /GitExtensions
gitex comnit

_images/command_line_usage.png
Commandiine =)

Supported commandiine arguments:

browse [path [fter=]
about
add
addiles
2pply [filename]
applypatch filename]
blame filename
branch
checkout
checkoutbranch
checkoutrevision
chery
cleanup.
clone [path]
commit [--quiet]
ilhistory flename
ileditor flename
formatpatch

jtbash

merge [--branch name]

mergeconflicts [--quiet]

mergetool [--quiet]

‘openrepo [path] [fiter=]

pul [--rebase] [~-merge] [fetch] [--quiet] [--remotebranch name]
push [-quiet]

rebase [--branch name]

remotes

synchronize [--rebase] [--merge] [-fetch] [--quiet]
tag

viewdiff

viewpatch [filename]

_images/commit_dialog_commit.png
Commit to master

2 | R Working dir changes -

diff --git a/source/commit.rst b/source/commit.rst

- tmp.doc

index bdcdd2d..1773ces 100644
a/source/commit.rst

+++ b/source/commit.rst

@@ -42,7 +42,7 GE unstaged file.

During your initial commit there are probably lots o

staging them, but they will show every time. You coul
in the “*.gitignore'" file will not show up in the cf

~**Working dir changes® I

warning: CRLF will be replaced by LF in source/commit

8 stge | 8

The file will have its original line endings in your

’

7 resimemd
7 source/command line.st

/7 source/images/commit_dislog png
7 source/images/reset_changes png
7 source/images/show_untrscked.png

Options + |

[] Amend Commit

_images/commit_dialog_language.png
Copy
Paste
Delete
Selectall

Translate Tmprove to English
Translate entire text to English

Dictionary 3

Markill formed lines

cut

_images/commit_dialog.png
Commit to master

2 | B Working dir changes -

/7 readmemd

8 stge | 8

diff --git a/source/command_line.rst b/source/command .
index c213160..2d34£94 100644
a/source/command_line.rst

+++ b/source/command_line.rst

@@ -7,6 +7,8 @@ Git Extensions command line

Most features can be started from the command line.
when using from the command line.

+It is typically stored in the °'C:\Program Files (x8
o &
inag

/images/conmand_line_usage.png
image:: /images/command_line.png

warning: CRLF will be replaced by LF in source/comman
The file will have its original line endings in your

il)

© Commit S Commit message ~ Options + |

@ Commit&pusn

£ Reset changes
[] Amend Commit

1 Col

_images/commit_log_stash.png
Message

[stash]WIP on Refactor: 0b5366d... Added image support
index on Refactor: 0b5365d... Added image support
[Refactor] Added image support

‘Added waitoursor

Henk Westhuis
Henk iesthuis
Henk iesthuis
Henk iesthuis

_images/commit_menu_edit_ignored.png
Working dir changes ~|
‘Show ignored files
v Show untracked files

Delete selected files
Reset selected files

9 Resetall (racked) changes

Editignored fi

Delete all untracked files

Selection fifter

_images/commit_dialog_spellchecker.png
Add to dictionary.
Ignore word
Remove word
cut

Copy
Paste
Delete
Selectall

Translate Tmproe’to English
Translate entire text to English

Dictionary.

Markill formed lines

_images/commit_diff_view.png
GitExtensions!

File Git Commands

Remotes Github Submodules

Plugins Settings Help

2| © - CAdocuments\doc\GiEstensionsDoc\ - master ~ |IF + @ Commit & + @ | B 47 | Branches: - G- | Fiter
) master | |, origin/master | Add and partialy update view commit log part martingt 2 minutes ago 2
‘Add new repository part martingt 12 minutes ago
Add 2 progres e martingt 15 minutes ago
Add appearance screen martingt 23 minutes ago
Completegit extensionsseting table martingt 2hoursago
Start gt extensions seting table martingt 16 hoursago
Set copyrights martingt 16 hoursago

© Commit [= Filetree

T3 Diff (A parent —> B: selection)

' source/getting starizd st
+ source/images/clone png

e 8,5 +8,5
- 2.1
-1
-1

B *[I]

+ -

- x]

TS

.2
.3
¥
s
.5

diff --git a/progress.nd b/progress.md
index 2dd0£07..312cace 100644

-—- a/progress.nd

+++ b/progress.nd

€@ Progress
Install

Settings

Start Page

Clone existing repository
Clone existing repository
Create new repository

I

i

_images/context_menu_blame.png
‘Open with difftool &
Copy filenameto clipboard Ctrl+C.
Save (B) as... Ctrl+s
Reset file(s) to

File history

Blame.

Difftool base < - > local
Difftool remote < - > local

Open containing folder
Find

Ctrl+F

_images/compress_database.png
Submodules Plugins | Settings | Help

—

@ Git maintenance

‘Compress gitdatabase
Edit .gitignore. . Recover lost objects
Edit giattibutes Delete indexlock

Edit malmap.

Edit gitreview

17 settings

_images/context_menu.png
‘Solution Explorer - Selution ‘GitCommands’ (8 proje... v & X
B|oEIEA
[2] Solution ‘GitCommands' (8 projects)
3 Solution tems
- (3 GitCommands
24l Properties
1 References

Open
Open With.
@y File history
Undo file changes

View Code
View Class Diagram

Exlude From Project
w

_images/delete_tag.png
3 Delete tag =2
Selcttag - [Codee ‘

7] Delte rom ‘origin’

_images/explorer_integration.png
[GitEx Browse
© Gitex Commit

i GitExtensions

& Pull
@ Push
View stash

View changes

Checkout branch
Checkout revision
Create branch

pPoe R

‘Open with difftool
File history

Reset file changes
Add files

Apply patch

+ 5 &

Settings

©

_images/create_branch_dialog.png
Create branch at this revision 6218182552

Branch name Refactor | [Createbronch

Checkout after create

or choose another one.

Orphan

Create orphan (1] Clear working i anc ndex

B Hep

_images/delet_branch.png
44 Delete branch [

¢ You can onl delete branches when they arefuly merged n HEAD.
Vihen you delte a branch the commis can ge ot because nothing point tothe.
When you wart to delete a otfuly merged branch, you can overide
this using Torce deete”

‘Select branch - Delete

[7] Force delete.

_images/file_history_diff.png
File History - sou
Branches: 125b852603ad5clb2f5id - G- | Fiker G-

Set copyrights

Change PDF parameters martingt 19 hoursago.

Add pdf bui martingt 19 hours ago. -
 View| 434 Diff [Blame

Qiff —-git a/source/cont.py b/source/conf.§ § |+ — B q [0 UTF8 . -

index D000903..ddb3cSe 100644
a/source/cont.py
+++ b/source/cont.py
@@ -25,7 +25,7 @€ import sys, os

Add any Sphinx extension module names here, as strings. They can be extensions
coming with Sphinx (named ’sphinx.ext.*') or your custom ones.

[*sphinx.exc.todo’
[*sphinx.exc.todo’
Add any paths that contain templates here, relative to this directory.
templates_path = [*_templates’]

6
7

—extensions

o textensions

‘ il

_images/generate_or_import_key.png
GitExtensionsDoc (atest) - Git

Fle Gt Commands | Remotes | Github Submodules Plugins Settings Help
% | @ + C\documents\dg Manage remote repositories Commit & - @ | B [| Branches: - & | Filter: =]
master | orgin/mast|@_PuTTY » | B stortsuthentication agent martingt 1dayago B
rendmeimd:addsectonsbout viewth doc anine o redived &,_Genetae or mpor ke soslenson 8aysago -
Merge pullrequest £ from martingt/remove bash Janusz Bisobrzenski 7 days ago
Merge pull request 25 from martingtfi jpg Janusz Bisobrzenski 7 days ago
origin/remove bash | Read the doc don'tsupport custom roles martingt 7 daysago
origin/fix g | Convertjpg o png for pdf generation martingt 7 daysago

= Corrected source location ik

Merge pul request #3 from feinstaub/topic_appendix

Janusz Bistobrzewski 8daysago

Commit

Author; janusz <janusz@biupl>
Date: 1 week ago (lun. janv. 21 21:24:42 2013)
Commit hash: 929707 acbde7abef478436fba3551b645791 0
Children: 3064d2c35b 0768 c5cad 2efld2a5e3
Parent(s): 31ce08057

Corrected source location link

_images/explorer_integration_new.png
fE Gitex Clone
(@ GitbxCreste new repository

&6 GitExtensions

@ et

_images/file_history.png
File History - sour sta
Branches: 67f5c10e65e0d2sb24e: ~ | Fiter @12

‘Complete gt etensions sttng table martingt 2hours ago

Start git extensions setting table martingt 16 hours ago.

Start porti martingt 16 hours sgo -

" View

333 Diff | ¢¥ Blame

Getting Starced; Installation

Installacion

6
7

© There is a single click installer that installs MSysGit, kdif3 and Git Extensions. Tt
if 32bit and/or 64bit versions should be installed.
> The installer can be found ‘here <http://code.google.con/p/gitextensions/>

figure:: /images/install/installl.png

_images/git_bash_toolbar.png
File Gt Commands Remotes Github Submodules Plugins Settings Help
2 |© - Cdocuments\do\GitbxtensionsDod ~ atest | - © Commit®) & - §

_images/reset_changes.png
& F D

&

) Resetfile or directory changes R

Reset chunk of file
Open

Open with

Open with difftool
Copyfull path

Open containing folder
View file history

Editfile
Delete file

‘Addfileto gitignore

Interactive Add

_images/git_menu.png
Fle Edt View @

|xoai001 &¢|

Beode

Project Build Debug
Apply patch

Browse

Checkout branch
Chery pick

Commit

Creste branch

Clone repository
Edit gitignore
Format pstch
Gitbash.

Iniisize new repository
Mansge remotes
Merge

pull

Push

Rebase

Stash

Settings

Solve mergeconflcts
View changes

About Git Extensions

_images/rev-details-on-the-right.png
W Gitbxt_master (master) - Git Exensions

Sart Repository MNavigate View Commands Github Plugins Tools Help

| © - Githx master ~ master ~ | % - @ commit & v & [B [T | Branches: - G [Filter G- ¢
Revert “display reinfo on lft 1 Janusz Salobrzewski 2017-04-24 082543 A Author Loury Lsfage <lowre,Sx@hotmalir> Wz
Author date: 1 month ago (2017-04-22 21:38:33) <4
display revinfo on left Janusz Bislobrzewski 2017-04-24 08:29:43 Commit date: 1 month ago (2017-04-22 21:5132) EDOCT
e —— Janusz Blobrzewski 2017-04-24 Q62843 | COMME hash 7948bdlaceadsctfon07basb2s07s7i7 edd608 p |
Children: bedaledc20
Revinfo on the right Janusz Bialobrzewski 2017-04-24 06:29:43 Parent(s) 8374233049
Updated argument list for the browse command, Janusz Bislobrzewski 2017-04-23 16:33:08
[Reword] - Add reword functionality.
Try to find full commit hash for the argument passed in the cormmand line. Janusz Bislobrzewski 2017-04-23 16:33:07
Merge pull request #3668 from RussKie/fix_remove_duplicate_resource_ref... [..] Janusz Bialobrzewski 2017-04-23 12:41:02 This commit add the possibility
to reword a commit,
fix: Remove duplicate resource reference [.] Russkie 2017-04-23 12:34:10
Propose to ignore the exact selected files, Closes #3162, Janusz Bislobrzewski 2017-04-23 11:0544 Right dick on a commit
-» choose Advanced command
Merge pull request #3666 from lowdey/reword_advanced_menu [Janusz Biatobrzewski 2017-04-23 06:03:20 - reword commit

word] - Add reword functionality. Lafage

)

Related links: View on GitHub

333 Diff parent --> B: selection) %% Filetree [l Console

index 093223720..2a885¢b568 100644
--- a/GitUI/Translation/English.x1f

/ RevisionGrid.cs
+++ b/GitUI/Translation/English.x1f

/ RevisionGrid Designer.cs

<source>Revert commit</source>
<target />
</trans-unit>

<source>Reword commit</source>
<target />
</trans-unit>

Fa——

<source>Run script</source>
<target />

@@ -7592,6 +7592,10 @@ If this is a central repository

“ diff --git a/GitUI/Translation/English.x1f b/GitUI/Translatic§ § (+ — B ¢ O Unicode (UTF-g - TS

<trans-unit id="rewordCommitToolStripMenuItem.Text">

<trans-unit id="runScriptToolStripMenuTtem.Text">

(bare repository without a working directc

_images/resolve_merge_conflicts.png
Resolve merge conflicts.

(2| O)

Unresolved merge corflcts (doublecick on row to soive)

Fun mergetool

Flename

Gl Browse.cs
GeUl/Commit cs
GeUl/RevisionGidcs
SimpleExt/SipleFith

Solve selected corflit
Rescan mergecorficts

_images/revision_links.png
3 Settings - Revision links

Type to find

= GitExtensions
6it
GitExtansions
Commit dislog
Bppesrance
Revison links
Colors
StartPage
it Config
Build servr ntegration
s
Scripts
Hotkeys
Shell axtension

Advanced

Detailed

Plugins

Settings source:

@ Effective << O Local for current repository

<< O Distributed with current repository << O Global for all repositories

Categories

GitHub - commit
GitHub - PR
itHub

Name |GitHub - issues [Enabled B Help

Remote data
Use remotes
Search in
Search pattern

Revision data

upstreamlorigin [Only use the first match

M UrL [Push URL

github.coml/1+ngit

Add

Remove

Search in [Message [Local branch name (4] Remote branch name
Search pattern 0" JanchA\s#d)+
Nested pattern |(d)+
Links
Caption URI

ue {1}

ok || cancel || Discard || Apply

_images/revert_commit.png
Graph Message. Adthor Date.

[master][GitHubHEAD] [GitHublmasted [1.50] Added close checkbox to Henk Westhuis SatFeb 21 133428 2009 40100
‘Added basic image viewer SatFeb 21 1305:05.2009 40100
‘Added image support SatFeb 21 1242:49 2009 40100
‘Added waitoursor SatFeb 21 10:47:33 2009 40100
‘Added ShowCommandLine opi S ceeis bnch b hese Westhuis SatFeb 21 10:34:00 2009 40100

ddedCoscrosesDidog Westuis i Feb 20200502 20090100

Create newtag

Create new branch

_images/recover_objects.png
U Brovse gexerions), SN GUIN

File Gt Commands Remotes | Settings | Help

% [fagitetensions\) master | (@ _Git maintenance _» Compress gitdatabase

Grph Vessage Edit gitignore Recover lost objects
[mastelt dit mailmap =

; Improved usal 017 Henk Westhuis

_images/rebase_interactive_option.png
) update_conemu | Fix command line build since CommandLineBuilder was passed internal :(pe Miossec 14/07/20
Try Update ConEmu... Philippe Miossec 14/07/201
Add console change directory when changing repository Philippe Miossec 14/07/201

Rebase current branch on top of another branch
Current branch: update_conemu

Rebase on master

[¥] Interactive Rebase Preserve Merges Autosquash

Specific range From (exc) | [8] To [update_conemu Folieiontic

_images/related_links_location.png
Author: Laury Lafage <lowreyo7x@hotmailfr> A)\!
Author date: 1 year ago (2016-04-10 12111115) (

Committer: Janusz Bistobrzewski <jbialobr@o2.pl> fb
Cormmit date; 2 weeks ago (2017-04-20 17:5%:04)

Cormmit hash: ~2f6aBbga03435e910c5 120689860207 7dlofe
children: 8d298ad761

Parent(s) 638933dfd 1

A
3
|-

Add Edit functionality in Advanced menu #3167

This comrmit adds the possibility
to edit a comit,

Right click on a commit -> choose Advanced command
- edit commit

(cherry picked from commit d7365f0321153201696 7bc64Ge00efebe340cdo3

Related links: View on GitHub, ssue 3167

OTSTed T T35 IoICOPYLIE JoIBComD

_images/refactor_branch.png
martingt 40 minutes ago
Update command line usage image

T master |) Refactor | origin/master

_images/remote_repositories2.png
44 Remote repositories

‘Remote repostores | Defaut pul behaviour fetch & merge)

Local branchname Remote repostory _Defaut merge wif locabanchname Aame

orgin orgin/Asymc

orgn -

Defautmerge with orign/Async. -
cest

master Jorign master

raila

[Prune remote branches | [Updste al remote branch nfo

_images/remote_repositories.png
44 Remote repositories 3 B
| Remote repostones | Default pull behaviour fetch & merge)

Detis
Nome Em

w st com s smtersorast -
RurTY SSH

Fovaskorfie G/ Mok _GtEdorsors ok

(oo] [hew] [Csee]

_images/gitignore.png
-

Lexp

a1
.aps
-peh
.vepsce

*.zip
[Dd]ebug/
.10
.oz
[L1]ib/

i ’

_images/install3.png
Git Extensions 243

Destination Folder E% z

Ciick Next to nstallto the defaut folder or cick Change to choos...

Instal Git Extensions 2.43 to:

[C:\Program Fies (x86)\GitExtensions\

Back Next Cancel

_images/github_openssh.png
Checkist | Gt ewtensions | Appearance | Giobal settings | Local settings Ssh |

[~ Specily which ssh clent to use

 paTTy TpenSSH is 3 commandine taol PUTTY s mare usefendly t use for windows Users.
but ecuies the PUTTY authertication cient o un in the background.
© @ when OpensSH is used, command line dilogs are showri

© Other ssh olient Bio,

[~ Corfigure PuTTY.

Pathtopinkews [CProgiam FlestHerk\GIERnsions\PuT TY gl exe

Biowse.
Pathtoputygen [CAProgtam FlessHerk\GIEAensions\PuT TV pulygen e Biowse.
Pathtopageant [C\Progtam FlestHerk\GIERnsians\PUl TY \pageant 2w Biowse.

I sutornetically stat euthentication cliert when & private Key is confiqured for a remote.

o

_images/github_ssh.png
Settings

Checkist| Gitextensions | Appearance | Giabal settings | Local settings Ssh |

Speciy which ssh cent o use

& PuTTY,
© DpenSSH

 Other ssh olient

TpenSSH is 3 cammandine taol PUTTY s mare usefendl t use for windows Users,
but ecuies the PUTTY authertication cient o un in the background.
when OpensSH is used, command line dislogs are showri

I Eo

Corfigure PuTTY
Pathto pink.cxe

Path o puttygen

Path o pageant

[CProgtam Fles Honk\GRE ersors Pu TYvprk ere Browse

[CProgtam Fles ok GHE Hensors T Y putygen 1o Browss

CProgtam Fles Hork\GHE Hensons PuTTY\pageantove Browss

ik |

IV Automaticaly stat authentication clent when a pivate key is canfigued for remate

o

_images/install6.png
Git Extensions 243

Ready to install Git Extensions 2.43

Glt
EXT

Ciick Install to begin the instalation. Clck Back to review or change any of
Your installation settings. Click Cancel to ext the wizard.

_images/lost_found.png
T c:\development\ - Git Extensions
Gt Commands Remotes Submodles Plgins Settings Help
civdevelopmenty ~ & master |12 + @ commit & @ |7 17 | Fiter

Graph Message Author Commit Date
[master]lorigin/HEAD][origin/masier] ised rul eference exceplion. Henk Westhuis 2B minutes ago
‘Added support for WiMerge s dif ool Herk Westhuis 3 hours ago
[LOST_FOUND_5]dded suppot for WinMerge as cif tool Herk Westhuis 3hous a0
Optinized dashboard Herk Westhuis 19 hous ago
[LOST_FOUND_g]dded summer cow Herk Westhuis 19 hous ago
[LOST_FOUND_B]dded summer cow Herk Westhuis 20 hous ago
Added wmass com Herk Westhuis 2days ago

Improved deshboard Herk Westhuis 2days ago
I [LOST_FOUND_3]improved dashboard Herk Westhuis 2days ago

Improved deshboard Herk Westhuis 2days ago

Commit | Fieee | Dt |
mands /G1/GiCom] 00 -2471,12 +2471,12 08 namespace GitCommands

Gitll/FomSettings.cs

Ul Fomaaties Designercs public static string OpenWithDifftool(string filemame)

¢
return RunCrd (Settings.GitCommand, "difftol --no-promp
return RunCrd(Settings.GitCommand, "difftool --gui --no

public static string OpenVithDifftool(string filename, stri
¢
return RunCrd (Settings.GitCommand, "difftool --no-promp
return RunCrd (Settings.GitCommand, "difftool --gui --no

_images/install4.png
Git Extensions 243

Custom Setup
Select the way you

=
‘want features to be nstaled. (G}

Ciick the icons n the tree below to change the way features wil be nstaled.

Plugins M
Extra application icons
Custom merge scripts
Speling dictionaries
Transitions

Windows Explorer integration
Visual Studio 2005 integration
Visual Studio 2008 integration

Browse...

Come]

_images/install5.png
Git Extensions 243

Select SSH Client.
Select the SSH cient that wil be used by Git Extensions

Glt
EXT

OpenssH
OpenssH s the Gt defautt.

PuTTY (plink.exe)
PUTTY has better integration with Windows.

_images/mail_map.png
44 Edit mailmap o —

Henk Westhuis <henk_westhuis@hotmail.com>

Edit the maimap.
“This file is meant to corect usemaes.

Example:
Herk Westhuis <Herk@ frone)>
Henk Westhuis <henk_westhuis @hotmai.com>

_images/rebase_interactive.png
» update_conemu | Fix command line build since CommandLineBuilder was passed internal

Try Update ConEmu...
Add console change directory when changing repository

master | upstream/master

Combined diff moved at the|
Merge pull request #3257 i

Copy to clipboard

Checkout branch
Merge into current branch

resting one and should be ex

Merge pull request #3262 fr

Rebase current branch on

[\master

VCdb is now used instead of

s(bP|lEY =

Reset current branch to here

upstream/master

_images/rebase_dialog.png
44 Rebase

| e —

Rebase curent branch on top of another branch
‘Curent branch: Refactor

Rebaseon master

Commitsto re-apoly:

Name _ Subject

_images/rebase_interactive_fixup_commit.png
jb/formRer

) update_col
Try Update|

Add consol

master ol
Combined

Merge pull

Merge pull

VCdb is nof
git_worktre|

[o

Copy to clipboard

Checkout branch

Layout used for placing controls insi

Commit | %5 File

Author:
Author

Saved the ¢ P

M. Merge into current branch

s e brancon mandLineBuilder was passed intern

£ Reset current branch to here

s Createnewbranch Ctrl+B itory

4 Rename branch ke method on a Disposed object.

Be Delete branch ffis the most interesting one and she
Comparg) fext_selection

% Create new tag QT e ditt settings

% Delete tag

& Checkout revision

¥} Revert commit

& Cherry pick commit DO: trouver moyen de retrouver le

£ Archive revision
Advanced Create a fixup commit
Navigate Create a squash commit

_images/rebase_interactive_autosquash.png
Rebase current branch on top of another branch

Current branch: improve_fixup_commits

Rebase on refs/heads/master

[¥] Interactive Rebase Preserve Merges Autosquash || Auto stash

To [improve.fixup_commits Solve conflicts I

Specific range From (exc.)]

_images/github_clone.png
Github: Remote repository fork and clone

My repositories | Search for repositories

Narme.
GitExtensionsDoc

Isfork | #Forks
Yes 0

Private
No

1f you want to fork a repository
wned by somebody ele, go to the
Search for repositories tab.

Clane
Destination folder

C:\Pocuments and Settingshsomeuseriy Docurme|

Browse.

Create directory

Add remate as:

_images/merge_conflicts.png
1ff Browse fitempgitextensions\

- .
- o ————

File Gt Commands Remotes Setings Help
2, [ftemp\gitecensions\ % (no branch) | © Commit & @ |7 17 | Fiter

_images/merge_dialog.png
158 Mege banchs i, —

_images/merge2.png
Graph Message.
[Refactor] Namespace renamed to GitExtensions.™

‘Sources moved to subdir
Removed unused projects

Imaster] Added close checkbox to process dialog

‘Added basic image viewer

‘Added image support

‘Added waitoursor

‘dded ShowCommandLine option and added doubleclick to commit dialog
dded CoseProcessDislog and added ShowRevisionGraph options.

Fixed crash on some repos

Added changelog

Henk
Henk

Henk

Henk Westhuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk Westhuis

Date.
Sun Feb 22 1228:12 2009 40100
Sun Feb 22 122754 2009 40100
Sun Feb 22 122740 2009 40100
SatFeb 21 133428 2009 40100
SatFeb 21 130505 2009 40100
SatFeb 21 124249 2009 40100
SatFeb 21 10:47:33 2009 40100
SatFeb 21 10:3400 2009 40100
Fr Feb 20 20,0502 2008 40100
Thu Feb 19213807 2009 40100
Thu Feb 19 20:01:54 2009 +0100

_images/merge3.png
Graph Message
Imaster]Merge branch Refactor”
[Refactor] Namespace renamed to GitExtensions.™
‘Sources moved to subdir
Removed unused projects
Added close checkbox to process dislog.

Henk Westhuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk Westhuis

Date
‘Sun Feb 22 12:44:15 2009 +0100
Sun Feb 22 1228:12 2009 +0100
Sun Feb 22 122754 2009 40100
Sun Feb 22 122740 2009 40100
‘Sat Feb 21 13:34:28 2009 0100

_images/new_repository.png
Initalize new

Directory Ci\documents\doc\GitExtensionsDoc

Repository type
Person repository

Central repository, no working dir (--bare --shared=all)

_images/new_tag.png
» master [origin/master [IZIEREIL
Update commit diffview

‘Add snd partaly updte view commitlog part
Add clone repository part

Add new repository part

Add s progress file

Add sppearance screen

Complete git extensions setting table

Copyto clipboard

Create new tag CrleT

OB L@ m

Crestenewbranch Ctr+B
Reset current branch to here
Rename branch

Checkout branch

Checkout revision
Manipulate commit

maringt
maringt
maringt
maringt
maringt
maringt

martingt

7 hoursago
7 hoursago
7 hoursago
7 hoursago
7 hoursago
8hoursago
9 hours ago

_images/move_to_category.png
Recent Repositories

©
©

Ci\documents\tmp\Gitsten;
C\documents\doc\GitExtens

Move to category Curents
== New category

Move down

Remove

i

Show current branch

_images/new_branch.png
{» master || origin/master [LIREELFTEEITE Copy to clipboard > arting

Updte command line usage image Crestenewtag CuieT martingt 16 minutes ago

Improve getting stated st Creste new branch _ Ctl-8 martingt 12 hours sgo.

Update create repository image Reset current branch to here martingt 12 hours sgo

_static/comment-close.png

_static/down-pressed.png

_static/comment.png

_static/down.png

_static/git-extensions-logo-128.png

_static/file.png

_static/ajax-loader.gif

_images/verify_database.png
1 Verify database -~ =

By defout orly unrferenoed objecs the ae lderhn fr———

2 weeks are removed when dlearing up the database. Al

e N e e Do not consider commits that are referenced only by an entry ina

‘danging objects’ reflog o be reachable.

To ecover a st comn tagthe commit and ¢ wil pear - Pint out objecs tha it but that aren readablefrom any o the efeence
nodes.

nthe browse dialog agai.

Check not ust bjects in GIT_OBJECT_DIRECTORY (SGIT_DIR/objects).

Doublecick on arow cortaiing a shalto viewabject, L bu s theones found n akamate abjec poos.

[Tag selected object | [Tag allost objects | [Tog allost commis | Remove all danging objects
[Delete ol LOST_AND_FOUNDtags | [View selected object | Save objectsto gtostfound

_static/comment-bright.png

_images/manage_remote_repositories.png
File Git Commands | Remotes | Settings _Help
2 S rigtntmcone

@ v ,

_images/merge1.png
Imaster] Added close checkbox to process dizlog
‘Added basic image viewer

‘Added image support

‘Added waitoursor

‘dded ShowCommandLine option and added doubleclick to commit dialog
dded CoseProcessDislog and added ShowRevisionGraph options.

Fixed crash on some repos

Added changelog

Henk Westhuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk Westhuis

Date
Sun Feb 22 1228:12 2009 40100
Sun Feb 22 122754 2009 +0100
Sun Feb 22 122740 2009 40100
SatFeb 21 133428 2009 40100
SatFeb 21 130505 2009 40100
SatFeb 21 124249 2009 40100
SatFeb 21 10:47:33 2009 40100
SatFeb 21 10:3400 2009 40100
Fr Feb 20 20,0502 2008 40100
Thu Feb 19213807 2009 40100
Th Feb 19 20.01:54 2009 40100

_images/pull.png

_images/pull_dialog.png
44 Pull(fgitextensions\) - — == -

Pullfrom

Merge options.
Merge remote branch to curent branch

Rebase remote branch to curert branch, creates inear hisory. s recommeded to choose:
remote branch when using ebase. (use with cation)

Do not merge, onlyfetch remote branch

Sovocois] [Siatnararges] [Atososn (B Losd S8 [Pl

_images/patche_dialog_result.png
Ll e | =

F/temp/000L-Fixed-crash-on-some-repos.patch
F/temp/0002-Added-CoseProcessDialog-and-added-ShowRevisionGraph.patch
F/temp/0003-Added-ShowCommandLine-option-and-added-doubleclick-t patc
h

F/temp/0004-Added-waitcursor.patch

_images/perforce_p4merge.png
& G Commands o P P -
File Edit View Search Help
&,

“H Da @ e PR g
102 iffs (tgnore Ine ending differences) | Tab spacing: 4 | File format (Encoding: System Line endings: Windows)
Base: GiCommands.cs.BASE

Lefs GitCommands.csOCAL Offereres fombase: e 1 -
Right: GtCommands.cs.REMOTE Diferences from base: Sunicue > <"
Merge: GitCommands.cs Conficts: 7
@ ommands/GitCommands Gt/GtCommandscsOCAL (23 tCommands/GtCommands GGt Commands.cs BASE @ mmandsGConmands/Gt/GCommands.cs REWOTE *
rocEssatArT (77 TR rocessatarT T |
)))
caten caten caten o
¢ ¢ ¢
))) |
)))
public void Run(string cmd, public stavic void Run(stri public stavic void Run(stri
| « « ¢ |
oy oy oy
I « « «
I argunents = argunen argunents = argunen argunencs = argunen
; secsing cicten = secsing cicten = secsing cicten =
] Trenrans nae o n Trenrans nae o n Trrnrans nan o n

ko stcommands.cs

caten
i
i

i

public void Run(string cmd, string arguments) @9 -

B I
cry

i

arguments = arguments.Replace ("\\', '/’

Settings.Gitlog += omd + " " + arguments + "\n"
4 - xternal command
D] D

_images/pull_toolbar.png
File Gt Commands Remotes Settings Help
% [figitetensions\ & master | @ Commit [§] &

Graph Message

_images/pull_dialog2.png
44 Pull(fgitextensions\) - — == -

=
-
=
e~ .
Noomcpr

© Merge remote branch to cument branch

Rebase remote branch to curert branch, creates inear hisory. s recommeded to choose:
remote branch when using ebase. (use with cation)

Do not merge, onlyfetch remote branch

Sovocois] [Siatnararges] [Atososn (B Losd S8 [Pl

_images/pull_dialog3.png
44 Pull(fgitextensions\) - — == -

Merge remote branch to curent branch

(@ Rebase rmote banch o curert branch, cretes near itory. i recommedecito choose.
 remote branch when using rebase. fuse wih caution)

Do not merge, onlyfetch remote branch

[Sovecaics] Sshotenges]) Asosesh (BB LandSSiker] [P

_images/stash_dialog.png
Tt g ar [] | 5% —oiv a/GatCommnas/GiComanas/Seveinge or 12|
L ecemmanan/eincamanas; secrings.ca

G0y romrrocs Desgrrs PO et el

ST e e

e o]

,

. et e
:

- E

Memoe:

|

|

Steshalchanges | [Drop selectedstash | [Apply selected stash to working |

I

_images/stash.png

_images/submodules_dialog.png
Submodules — ™)
Name Status zﬁ“‘
GitCom Up-o-date ame. GeUl
Plugin Uptodate FEEmED d:/demo/SubModule Test/Git Ul
= c9bf5F4abba2c242221af 12446362 bdbeSaZbed
ey heads/master
Status Uptodate

[Symchvonize] [intisize] [Update]

_images/submodules.png
i Browse D:\Demo\SubModuleTest\supery

Fie Gt Commands Remotes

2 (5 DADeme\SubMoculeTestsuper

Graph

1

Message.
Imaster]Addg
Addedsi

Submodules | Settings _ Help

Manage submodules

Update all submodules.
Iniialize all submodules
Synchronize all submodules

_images/toolbar.png
ual Studio (

Fle Edt View Git Project Buid De
[==N-]
@ Commit 5 & & W83

FormProcess.cs | FormProcess.cs [Desic
% GitCommands Sttings

11001 3¢

_images/tag.png
Graph Message

Author

Date

Fixed open working ir vith spaces from VS and shell extensions and addec Henk Viesthuis

‘Added plugin to setup.
[1.08]Minor changes for version 1.08

‘Added archive function

Fixed using * (quote) in commit message

Fixed commits per user and added show fles to 3dd™
Fixed directory select clone form

dded progress dialog to stash

Fixed formatpaich dialog

‘Added setting tolocate gitemd

‘Added dil's to make it easier for thers to compile
[PATCH] Quote path when calling regecit

[1.06]Fixed reset hard and fixed checkout dialog
Deleted mailmap.. it was just there to test

Henk iesthuis
Henk Westhuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk iesthuis
Henk Westhuis

Tha Jan 8 190451 2009 0100
Vied Jan 7 20:23:30 2009 0100
Tue Jan 6 19:27:35 2009 40100
Tue Jan 6 19:22:50 2009 40100
Tue Jan 6 185150 2009 40100
Tue Jan 6 18:4857 2009 40100
Tue Jan 6 1827:10 2009 40100
Mon Jan 5 19:56:12 2008 40100
Mon Jan 5 19:46:37 2009 40100
Mon Jan 5 19:25:43 2009 40100
Mon Jan 5 19:25:15 2009 40100
Mon Jan 5 17:52:52 2009 40100
Sun Jan 4 16:16:16 2009 40100
Sun Jan 4 15:36:24 2009 <0100

_images/settings1.png

_images/settings.png
’) Global for all repositories.
- Git Extensions

Gt
‘The checkist below validates the basic settings nesded for GitExtensions to work properly.

Git Bxtensions

Commit dialog Git 183 i found on your computer.

Appearance A username and an email address are configured.

Revision links

Colors Thereis a custom mergetool configured: pémerge.

Start Page Thereis a difftool configured: beyondcompare3

Git Conf
9 Shell extensions registered properly.

Build serverintegration

SsH Linuxtools (sh) found on your computer.

scripts Gitextensions s propery registered.

Hotkeys

Shell exension SSH clent PuTTY is configured properly.

Advanced The configured language is English.

Plugins
Git credential helper is installed,

2] Check settings st startup (disables sutomatically i sl setings e correct Saveand rescan

Changes on the selected page will be saved instantly.
Therefore the Cancel button does NOT revert any changes made.

_images/ssh_folder.png
ress [c:tDocuments and Settingsienkl,ssh Be

ders. X id_rsa id_rsa
e = P Fie
S anens] 2

3ty Conpier s
34 594 Flopey () v ot

o

Tl tat Fomat vn Heb

[FSh-rsa AARABSNZACLyCZEARAABIWAAAQEATAFT Cr KBy Gy BXE7nnkivs SM7UXANTE GBPI3Q] /KT I MRPAGS/HZ 2]

_images/ssh_bash.png
fionkBUIRTUALBOK /c/Development (master>
5 ssh-keygen —C “henk_vesthuis@hotmail.con” ~t rsa

Generating public/private rsa key pair.

[Enter file in which to save the key (/c/Documents and Settings/Henk/.ssh/id_rsa)|

[Enter passphrase Cempty for no passphrased:
[Enter same passphrase again:
[Your identification has heen saved in /c/Documents and Settings/Henk/.ssh/id rsal

[Your public key has been saved in /c/Documents and Settings/Henk/.sshsid_rsa.pub)

[ihe key £ingerprint is
4935245 o240 T1c:5¢:8h:55:01:50:6a:fazce henk_westhuisGhotmail.com

J1onkBUIRTUALBOK /c/Development (master>

_images/start_page.png
Remotes Gt Submodules Plugins Setings Help
B 07 Brenches: - @ | Fiten

mmon Actions Currents.
Open repository Cluamplwumiterbssel master
Clone repository C\programmedinl Ot rojects\Roboty. master
Clone YN repository C\documents\codeprojecta\LsserGamel master
Clone Github repesitory C\documents\codelprojecta\Cypt master
Creste new repository

Recent Repositories
€© C\documents\tmp\GitExtensionsDoc\

€© Cidocuments\doc\GitExtensionsDoc\ master

Contribute
@ Develop
Donate

Translate

$
2
G lssves

_images/patche.png
1from 58c02ec4701c94cE71a4le1e5d50c5822859851F Mon Sep 17 00:00:00 2001
2From: Russell King <rmkEdyn-67.arm.linux.org.uk>

3Date: Sun, 17 Apr 2005 15:40:46 +0100

2 Subject: [PATCH 000213/123824] [PATCH] ARM: h3600_irda set_speed arguments
s

613600_irda_set_speed() had the wrong type for the "spesd” argument.

7Fix this.
e

9 Signed-off-by: Russell King <rmkarm.linux.org.uk>

10—

11 arch/arm/mach-sall00/n3600.c | 2 +-

12 1 files changed, 1 insertions(+), 1 deletions(-)

13

14 4iff --git a/arch/arm/mach-sal100/n3600.c b/arch/arm/mach-sall00/h3600.c
15 index 9788d3a..24c265¢ 100644

16

17

18€E -130,7 +130,7 6@ static int h3600_irda_set_power (struct device *dev, unsigned int state)
18 revarn 0;
20 3

25 if (speed < 4000000) {
26 c1r_n3600_egpio (IPAQ_EGPIO_IR FSEL):

.

281.6.1.9.997c34

_images/patche_dialog.png
- PrPRe=— - ¢ TS "

44 Format patch

Save patches n drectory

M patches to henk_westhus@hotmai com
Subject ‘Added shorteuts
Body ’MM Shortcuts keys o various dislogs
Graph Message. Aushor Date -
Imaster][1.70] Updated changelog Henk Westhuis. 20 minutes ago
‘dded shortcuts for Create Branch (ctl+b) and Cre Henk Vesthuis 36 minutes ago
Fixed bug in FormRemotes Herk Westhuis 44 minutes ago
‘Added shortcuts Herk Westhuis 53 minutes ago
‘Added defauit butons to Commit and FormProcess Henk Vesthuis 70 minutes ago
‘Added defauit btons to FormResolveConflicts an Henk Vesthuis 2hours ago
‘Added support for mergeconfict on submodules Henk Westhuis 25 hours ago.
‘Settings file created for GitUI Wilbertvan Dolleweerd 28 hours ago
AutoCRLF input opton added tolocal setings scre Wilbert van Dollewserd 28 hours ago
[1.69Fixed updating submodules recursive when Henk Westhuis Jwesks ag0
Added todo's Henk Westhuis 3wesks 300 o

Curent branch: master

_images/note_editor.png
2dd 2 mention in readme.

+

Write/edit the notes for the following object
+

commit 7725£d36c1133b94baa63665772b7752cT for4de
Ruchor: australiensun <australiengsun>

Date: Fri Jan 11 20:27:35 2013 +0100

for those without rst2pdf installed.

% source/conf.py | 2 +-
1 file changed, 1 insertion(+), 1 delecion(-)

